エネルギーキャリア

最終更新日:2019年3月26日

戦略的イノベーション創造プログラム(SIP)
課題「エネルギーキャリア」査読付論文リスト

(1)太陽熱を利用した水素製造

【高温太陽熱供給システム】

  • Hiroki. Takasu, Shigehiko. Funayama, Naoto. Uchiyama, Hitoshi. Hoshino, Yoshirou. Tamura, Yukitaka. Kato, Kinetic analysis of the carbonation of lithium orthosilicate using the shrinking core model, Ceramics International, 44(1), 11835-11839 (2018).
  • S. P. Sah, E. Tada, A. Nishikata, Corrosion behaviour of austenitic stainless steels in carbonate melt at 923 K under controlled CO2-O2 environment, Corrosion Science, 133(1), 310-317 (2018).
  • S. P. Sah, E. Tada, A. Nishikata, Enhancing corrosion resistance of type 310S stainless steel in carbonate melt by hot-dip aluminizing, J. Electrochem. Soc. 165(7), C403-C411 (2018).
  • Y. Okuhara, T. Kuroyama, D. Yokoe, T. Kato, M. Takata, T. Tsutsui, K. Noritake, High-temperature solar-thermal conversion by semiconducting -FeSi2 absorbers with thermally stabilized silver layers, Solar Energy Mater. Solar Cells, 174, 351-358 (2018).
  • Hiroki. Takasu, Junichi. Ryu, Yukitaka. Kato, Application of lithium orthosilicate for high-temperature thermochemical energy storage, Applied Energy,193, 74-83 (2017).
  • Hiroki. Takasu, Yukitaka. Kato, Reactivity enhancement of lithium orthosilicate for thermochemical energy storage material usage, Energy Procedia, 131, 94-100 (2017).
  • Y. Okuhara, D. Yokoe, T. Kato, S. Suda, M. Takata, K. Noritake, A. Sato, Solar-selective absorbers based on semiconducting β-FeSi2 for efficient photothermal conversion at high temperature, Solar Energy Mater. Solar Cells, 161, 240-246 (2017).
  • Sun. Woog. KIM, Kazuyoshi. UEMATSU, Kenji. TODA, Mineo. SATO, Viscosity analysis of alkali metal carbonate molten salts at high temperature, Journal of the Ceramic Society of Japan 123(1437), 355-358 (2015).

【熱利用水素製造】

  • Odtsetseg. Myagmarjav, Jin. Iwatsuki, Nobuyuki. Tanaka, Hiroki. Noguchi, Yu. Kamiji, Ikuo. Ioka, Shinji. Kubo, Mikihiro. Nomura, Tetsuya. Yamaki, Shinichi. Sawada, Toshinori. Tsuru, Masakoto. Kanezashi, Xin. Yu, Masato. Machida, Tatsumi. Ishihara, Hiroaki. Abekawa, Masahiko. Mizuno, Tomoyuki. Taguchi, Yasuo. Hosono, Yoshiro. Kuriki, Makoto. Inomata, Keita. Miyajima, Yoshiyuki. Inagaki, Nariaki. Sakaba, Research and Development on Membrane IS Process for Hydrogen Production using Solar Heat, Int. J. Hydrogen Energy , available online 13 April (2018).
  • M. Nomura, T. Kodaira, A. Ikeda, Y. Naka, H. Nishijima, S. Imabayashi, S. Sawada, T. Yamaki, N. Tanaka, S. Kubo, Development of ion exchange membranes for the membrane Bunsen reaction of the thermochemical hydrogen production IS process, J. Chem. Eng. Jpn., 51(9), 726-731 (2018).
  • Alam. S. M. Nur, Takayuki. Matsukawa, Eri. Funada, Satoshi. Hinokuma, Masato. Machida, Pt Supported on Ta2O5 as a Stable SO3 Decomposition Catalyst for Solar Thermochemical Water Splitting Cycles, ACS Applied Energy Materials, 1(2), 744-750 (2018).
  • Alam. S. M. Nur, Takayuki. Matsukawa, Asuka. Ikematsu, Masato. Machida, Catalytic SO3 Decomposition Activity And Stability of Supported Molten Vanadate Catalysts For Solar Thermochemical Water Splitting Cycles, Ceramic Transactions 264, 235-243 (2018).
  • Wachirapun. Punkrawee, Azusa. Yamanaka, Junko. Matsuda, Yukiko. Mitoma, Noriko. Nishiyama, Tatsumi. Ishihara, Pt‐Rh/TiO2/activated carbon as highly active and stable HI decomposition catalyst for hydrogen production in sulfur‐iodine (SI) process, International Journal of Energy Research, 42(7), 2494-2506 (2018).
  • Kwati. Leonard, Yuji. Okuyama, Yasuhiro. Takamura, Young-Sung. Lee, Kuninori. Miyazaki, Mariya. E. Ivanova, Wilhelm. A. Meulenberg, Hiroshige. Matsumoto, Efficient intermediate-temperature steam electrolysis with Y : SrZrO3–SrCeO3 and Y : BaZrO3–BaCeO3 proton conducting perovskites, J. Mater. Chem. A, 6, 19113-19124 (2018).
  • Odtsetseg. Myagmarjav, Ayumi. Ikeda, Nobuyuki. Tanaka, Shinji. Kubo, Mikihiro. Nomura, Preparation of an H2-permselective silica membrane for the separation of H2 from the hydrogen iodide decomposition reaction in the iodine-sulfur process, Int. J. Hydrogen Energy, 42(9), 6012-6023 (2017).
  • Odtsetseg. Myagmarjav, Nobuyuki. Tanaka, Mikihiro. Nomura, Shinji. Kubo, Hydrogen production tests by hydrogen iodide decomposition membrane reactor equipped with silica-based ceramics membrane, Int. J. Hydrogen Energy, 42(49), 29091-29100 (2017).
  • A. S. M. Nur, T. Matsukawa, S. Hinokuma, M. Machida, Catalytic SO3 Decomposition Activity and Stability of Pt Supported on Anatase TiO2 for Solar Thermochemical Water Splitting Cycles, ACS Omega, 2(10), 7057-7065 (2017).
  • M. Nomura, T. Kodaira, T. Kimura, A. Ikeda, Y. Naka, H. Nishijima, S. Imabayashi, S. Sawada, T. Yamaki, N. Tanaka, S. Kubo, Development of Radiation-Grafted Cation-Exchange Membranes for Redox-Type Reactors in the IS Process, QST Takasaki Annual Report 2015, QST-M-2, 45 (2015).
  • O. Myagmarjav, A. Ikeda, T. Nobuyuki, S. Kubo, M. Nomura, Preparation of an H2-permselective silica membrane for the separation of H2 from the hydrogen iodide decomposition reaction in the iodine-sulfur process, Int. J. Hydrogen Energy, 42(9), 6012-6023 (2017).
  • 野村幹弘, 池田歩, 竹日文淳登, 無機逆浸透膜の現状と可能性, 膜, 42(4), 115-120 (2017).
  • O. Myagmarjav, T. Nobuyuki, M. Nomura, S. Kubo, Hydrogen production tests by hydrogen iodide decomposition membrane reactor equipped with silica-based ceramics membrane, Int. J. Hydrogen Energy, 42(49), 29091-29100 (2017).
  • Leonard. K, Lee. Y-S, Okuyama. Y, Miyazaki. K, Matsumoto. H, Influence of dopant levels on the hydration properties of SZCY and BZCY proton conducting ceramics for hydrogen production, International Journal of Hydrogen Energy, 42 (7), 3926-3937 (2017).
  • T. Kawada, M. Sueyoshi, T. Matsukawa, M. Machida, Catalytic SO3 Decomposition Activity and Stability of A–V/SiO2 (A = Na, K, Rb, and Cs) for Solar Thermochemical Water-Splitting Cycles, Industrial & Engineering Chemistry Research, 55(45), 11681-11688 (2016).
  • 金指正言, 都留稔了, 硫酸分解のための膜分離プロセスの開発, 膜, 41, 102-107 (2016).
  • L. Meng, M. Kanezashi, X. Yu, T. Tsuru, Enhanced Decomposition of Sulfur Trioxide in the Water-Splitting Iodine-Sulfur Process via a Catalytic Membrane Reactor, J. Mater. Chem. A, 4, 15316-15319 (2016).
  • 池田歩, 野村幹弘, 炭化水素類分離のためのアモルファスシリカベース分離膜の作製, 石油学会誌, J. Jpn. Petrol. Inst., 59(6), 259-265 (2016).
  • 池田歩, 野村幹弘, 熱化学水素製造ISプロセス用水素選択透過膜の開発, 膜, 41(3), 108-113 (2016).
  • 八巻徹也, 小平岳秀, 澤田真一, 田中伸幸, 久保真治, 野村幹弘, 放射線グラフト重合法による膜ブンゼン反応用カチオン交換膜の開発, 膜,41(3), 114-120 (2016).
  • T. Kawada, S. Hinokuma, M. Machida, Structure and SO3 Decomposition Activity of nCuO-V2O5/SiO2 (n=0, 1, 2, 3 and 5) Catalysts for Solar Thermochemical Water Splitting Cycles, Catalysis Today, 242, Part B, 268–273 (2015).
  • T. Kawada, T. Tajiri, S. Takeshima, M. Machida, Structure and SO3 Decomposition Activity of CeVO4/SiO2 Catalysts for Solar Thermochemical Water Splitting Cycles, International Journal of Hydrogen Energy, 40, 10726–10733 (2015).
  • L. Meng, M. Kanezashi, T. Tsuru, Catalytic Membrane Reactors for SO3 Decomposition in Iodine-Sulfur Thermochemical Cycles: A Simulation Study, Int. J. Hydrogen Energy, 40, 12687-12696 (2015).
  • L. Meng, M. Kanezashi, J. Wang, T. Tsuru, Permeation Properties of BTESE-TEOS Organosilica Membranes and Application to O2/SO2 Gas Separation, J. Membr. Sci., 496, 211-218 (2015).
  • A. Ikeda, R. Ono, M. Nomura, High hydrogen permeance silica membranes prepared by a chemical vapor deposition method, J. Membr. Sep. Tech., 4, 66-73 (2015).
  • 池田歩, 小野竜平, 野村幹弘, 化学蒸着法によるシリカ膜のガス・蒸気分離, 膜, 40(4), 205-210 (2015).
  • E. Matsuyama, A. Ikeda, M. Komatsuzaki, M. Sasaki, M. Nomura, High temperature propylene/propane separation thorugh silica hybrid membranes, Sep. Purif. Tech., 128, 25-30 (2014).
  • M. Nomura, E. Matsuyama, A. Ikeda, M. Komatsuzaki, M. Sasaki, Preparation of silica hybrid membranes for high temperature CO2 separation, J. Chem. Eng. Jpn., 47(7), 569-573 (2014).
  • A. Ikeda, E. Matsuyama, M. Komatsuzaki, M. Sasaki, M. Nomura, Development of inorganic silica reverse osmosis membranes by using a counter-diffusion chemical vapor deposition method, J. Chem. Eng. Jpn., 47(7), 574-578 (2014).
  • T. Kawada, H. Yamashita, Q-X. Zheng, M. Machida, Hydrothermal Synthesis of CuV2O6 Supported on Mesoporous SiO2 As SO3 Decomposition Catalysts for Solar Thermochemical Hydrogen Production, International Journal of Hydrogen Energy, 39, 20646-20651 (2014).

(2)アンモニアの製造・利用技術

【製造】

  • M. Nishi, S. -Y. Chen, H. Takagi, A Mesoporous Carbon-Supported and Cs-promoted Ru Catalyst with Enhanced Activity and Stability for Sustainable Ammonia Synthesis, ChemCatChem, 10(16), 3411-3414 (2018).

【燃料電池】

  • T. Okanishi, K. Okura, A. Srifa, H. Muroyama, T. Matsui, M. Kishimoto, M. Saito, H. Iwai, H. Yoshida, M. Saito, T. Koide, H. Iwai, S. Suzuki, Y. Takahashi, T. Horiuchi, H. Yamasaki, S. Matsumoto, S. Yumoto, H. Kubo, J. Kawahara, A. Okabe, Y. Kikkawa, T. Isomura, K. Eguchi, Comparative Study of Ammonia-fueled Solid Oxide Fuel Cell Systems, Fuel Cells, 17, 383-390 (2017).
  • Wee. Choon. Tan, Hiroshi. Iwai, Masashi. Kishimoto, Grzegorz. Brus, Janusz. S. Szmyd, Hideo. Yoshida, Numerical analysis on effect of aspect ratio of planar solid oxide fuel cell fueled with decomposed ammonia, J. Power Sources, 384, 367-378 (2018).
  • M. Kishimoto, N. Furukawa, T. Kume, H. Iwai, H. Yoshida, Formulation of ammonia decomposition rate in Ni-YSZ anode of solid oxide fuel cells, Int. J. Hydrogen Energy, 42, 2370-2380 (2017).
  • Atthapon. Srifa, Kaname. Okura, Takeou. Okanishi, Hiroki. Muroyama, Toshiaki. Matsui, Koichi. Eguchi, Hydrogen production by ammonia decomposition over Cs-modified Co3Mo3N catalysts, Appl. Catal. B: Environ., 218, 1-8 (2017).
  • Vandana. Singh, Hiroki. Muroyama, Toshiaki. Matsui, Koichi. Eguchi, Influence of cell design on the performance of direct ammonia-fueled solid oxide fuel cell: Anode- vs. electrolyte-supported cell, ECS Trans., 78, 2527-2536 (2017).
  • Masashi. Kishimoto, Tatsuya. Kume, Hiroshi. Iwai, Hideo. Yoshida, Numerical analysis of ammonia-fueled planar solid oxide fuel cells, ECS Trans., 78, 2845-2853 (2017).
  • Kazunari. Miyazaki, Takeou. Okanishi, Hiroki. Muroyama, Toshiaki. Matsui, Koichi. Eguchi, Development of Ni-Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells, J. Power Sources, 365, 148-154 (2017).
  • Yu. Katayama, Kosuke. Yamauchi, Kohei. Hayashi, Takeou. Okanishi, Hiroki. Muroyama, Toshiaki. Matsui, Yuuki. Kikkawa, Takayuki. Negishi, Shin. Watanabe, Takenori. Isomura, Koichi. Eguchi, Anion-exchange Membrane Fuel Cells with Improved CO2-tolerance: Impact of Chemically Induced Bicarbonate Ion Consumption, ACS Appl. Mater. Interfaces, 9, 28650-28658 (2017).
  • A. F. S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells, J. Power Sources, 305, 72-79 (2016).
  • S. Suzuki, H. Muroyama, T. Matsui, K. Eguchi, Effect of carbonate ion species on direct ammonia fuel cell employing anion exchange membrane, J. Electrochem. Soc., 163, F336-F340 (2016).
  • Y. Katayama, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Enhanced supply of hydroxyl species in CeO2-modified platinum catalyst studied by in situ ATR-FTIR spectroscopy, ACS Catal., 6, 2026-2034 (2016).
  • K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Ammonia Decomposition over Nickel Catalysts Supported on Rare-Earth Oxides for the On-Site Generation of Hydrogen, ChemCatChem, 8, 2988-2995 (2016).
  • K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Additive effect of alkaline earth metals on ammonia decomposition reaction over Ni/Y2O3 catalysts, RSC Adv., 6, 85142-85148 (2016).
  • A. Srifa, K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, COx-free hydrogen production via ammonia decomposition over molybdenum nitride-based catalysts, Catal. Sci. Technol., 6, 7495-7504 (2016).
  • Y. Katayama, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Enhancement of ammonia oxidation activity over Y2O3-modified platinum surface: Promotion of NH2, ad dimerization process, J. Catal., 344, 496-506 (2016).
  • J. Yang, A. F. S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and catalytic properties of Ni/BaCe0. 75Y0. 25O3-δ anode for direct ammonia-fueled solid oxide fuel cells, ACS Appl. Mater. Interfaces, 7, 7406-7412 (2015).
  • Y. Katayama, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical oxidation of ammonia over rare earth oxide modified platinum catalysts, J. Phys. Chem. C, 119, 9134-9141 (2015).
  • T. Okanishi, Y. Katayama, H. Muroyama, T. Matsui, K. Eguchi, SnO2-modified Pt electrocatalysts for ammonia-fueled anion exchange membrane fuel cells, Electrochim. Acta, 173, 364-369 (2015).
  • K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Promotion effect of rare-earth elements on the catalytic decomposition of ammonia over Ni/Al2O3 catalyst, Appl. Catal. A: Gen., 505, 77-85 (2015).
  • T. Matsui, S. Suzuki, Y. Katayama, K. Yamauchi, T. Okanishi, H. Muroyama, K. Eguchi, In Situ Attenuated Total Reflection Infrared Spectroscopy on Electrochemical Ammonia Oxidation over Pt electrode in Alkaline Aqueous Solutions, Langmuir, 31, 11717-11723 (2015).
  • A. F. S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and Catalytic Behaviors of Ni-YSZ Anode for the Direct Utilization of Ammonia Fuel in Solid Oxide Fuel Cells, J. Electrochem. Soc., 162, F1268-F1274 (2015).
  • J. Yang, A. F. S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells, ACS Appl. Mater. Interfaces, 7, 28701-28707 (2015).
  • J. Yang, T. Akagi, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Catalytic influence of oxide component in Ni-based cermet anodes for ammonia-fueled solid oxide fuel cells, Fuel Cells, 15, 390-397 (2015).

【燃焼】

  • Hideaki. Kobayashi, Akihiro. Hayakawa, K. D. Kunkuma, A. Somarathne, Ekenechukwu. C. Okafor, Science and technology of ammonia combustion, Proceedings of the Combustion Institute, 37(1) , 109-133 (2018).
  • E. C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Experimental and Numerical Study of the Laminar Burning Velocity of CH4-NH3-air Premixed Flames, Combust. Flame, 187, 185-198 (2018).
  • A. Shioyoke et al., Numerical Investigation on Effects of Nonequilibrium Plasma on Laminar Burning Velocity of Ammonia Flame, Energy Fuels 2018, 32(3), 3824-3832 (2018).
  • 石川他, 同軸流拡散火炎におけるNH3/N2/O2火炎の安定性に関する研究,日本機械学会論文集, 17-00526 (2018).
  • O. Kurata, et al, Rich-lean Low-NOx Combustor for Micro Gas Turbine Firing Ammonia Gas, Proc. Asian Congress on Gas Turbines 2018, TS81 (2018).
  • K. D. K. A. Somarathne, S. Colson, A. Hayakawa, H. Kobayashi, Modelling of ammonia/air non-premixed turbulent swirling flames in a gas turbine-like combustor at various pressures, Combustion Theory and Modelling, 22, 973-997 (2018).
  • K. D. K. A. Somarathne, S. Hatakeyama, A. Hayakawa, H. Kobayashi, Numerical Study of a Low Emission Gas Turbine Like Combustor for Turbulent Ammonia/air Premixed Swirl Flames with a Secondary Air Injection at High Pressure, Int. J. Hydrogen Energy, 42(44), 27388-27399 (2017).
  • O. Kurata, N. Iki, T. Matsunuma, T. Inoue, T. Tsujimura, H. Furutani, H. Kobayashi, A. Hayakawa, Performances and Emission Characteristics of NH3-air and NH3-CH4-air Combustion Gas Turbine Power Generations, Proc. Combust. Inst., 36(3), 3351-3359 (2017).
  • 武石裕行, 石川遥平, 林 潤, 岡南貴大, 山本康之, 飯野公夫, 赤松史光, 同軸流拡散火炎におけるNH3/N2/O2火炎の安定性と火炎長計測, 日本機械学会論文集,83(847), 16-00494 (2017).
  • A. Hayakawa, Y. Arakawa, R. Mimoto, K. D. K. A. Somarathne, T. Kudo, H. Kobayashi, Experimental Investigation of Stabilization and Emission Characteristics of Ammonia/air Premixed Flames in a Swirl Combustor, Int. J. Hydrogen Energy, 42(19), 14010-14018 (2017).
  • R. Murai et al., The radiative characteristics of NH3/N2/O2 non-premixed flame on a 10kW test furnace, Energy Procedia, vol.120, 325-332 (2017).
  • O. Kurata et al., Success of Ammonia-fired, Regenerator-heated, Diffusion Combustion Gas Turbine Power Generation and Prospect of Low NOx Combustion with High Combustion Efficiency, Proceedings of the ASME 2017 Power Conference Joint With ICOPE-17, POWER-ICOPE2017-3277, 1-10 (2017).
  • N. Iki et al., Operation and Flame Observation of Micro Gas Turbine firing ammonia, Proceedings of ASME Turbo Expo 2017, GT2017-64250, 1-7 (2017).
  • 武石裕行, 岡南貴大, 林 潤, 飯野公夫, 赤松史光, 酸素富化燃焼におけるアンモニア層流予混合火炎のNOx 生成特性, 日本機械学会論文集, 82(836), 15-00566 (2016).
  • S. Colson, A. Hayakawa, T. Kudo, H. Kobayashi, Extinction Characteristics of Ammonia/air Counterflow Premixed Flames at Various Pressures, J. Therm. Sci. Tech., 11(3), 16-00384 (2016).
  • K. D. K. A. Somarathne, A. Hayakawa, H. Kobayashi, Numerical Investigation on the Combustion Characteristics of Turbulent Premixed Ammonia/air Flames Stabilized by a Swirl Burner, J. Fluid Sci. Tech., 11(4), 16-0026 (2016).
  • N. Iki et. Al., Micro Gas Turbine Firing Ammonia, J. Combust. Soc. Jpn., 58(186), 215-222 (2016).
  • O. Kurata et. Al., Ammonia-fired gas turbine power generation system,Proceedings of World Hydrogen Energy Conference 2016, 147-148 (2016).
  • A. Hayakawa, T. Goto, R. Mimoto, T. Kudo, H. Kobayashi, NO Formation/reduction Mechanisms of Ammonia/air Premixed Flames at Various Equivalence Ratios and Pressures, Mech. Eng. J., 2, 1, 14-00402 (2015).
  • A. Ichikawa, A. Hayakawa, Y. Kitagawa, K. D. K. A. Somarathne, T. Kudo, H. Kobayashi, Laminar Burning Velocity and Markstein Length of Ammonia/hydrogen/air Premixed Flames at Elevated Pressures, Int. J. Hydrogen Energy, 40, 9570-9578 (2015).
  • A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, H. Kobayashi, Laminar Burning Velocity and Markstein Length of Ammonia/air Premixed Flames at Various Pressures, Fuel, 159, 98-106 (2015).
  • 武石裕行, 林 潤, 河野翔太, 有田 航, 飯野公夫, 赤松史光, 酸素富化燃焼におけるアンモニア層流予混合火炎の基礎燃焼特性, 日本機械学会論文集, 81(824), 14-00423 (2015).
  • N. Iki, et al., Micro Gas Turbine Firing Kerosene and Ammonia, ASME Turbo Expo 2015, GT2015-43689 (2015).
  • O. Kurata, et al., Power generation by a micro gas turbine firing kerosene and ammonia, Proceeding of International Conference on Power Engineering (ICOPE-15), 1139-1146 (2015).
  • T. Okanami, H. Takeishi, J. Hayashi, W. Arita, K. IINO and F. Akamatsu, Effect of the dielectric barrier discharge on the combustion promotion of ammonia/oxygen/nitrogen premixed gas, International Conference on Power Engineering (ICOPE-15), 1130 (2015).

【分解・吸着】

  • Tengfei. Zhang, Hikaru. Miyaoka, Hiroki. Miyaoka, Takayuki. Ichikawa, Yoshitsugu. Kojima, A Review on Ammonia Absorption Materials: Metal Hydrides, Halides, and Borohydrides, ACS Appl. Energy Mater., 1(2), 232–242 (2018).
  • A. Takahashi, T. Fujitani, Kinetic Analysis of Decomposition of Ammonia over Nickel and Ruthenium Catalysts, J. Chem. Eng. Jpn., 49, 22-28, (2016).
  • I. Nakamura, T. Fujitani, Role of metal oxide supports in NH3 decomposition over Ni catalysts, Appl. Catal. A, 524, 45–49, (2016).
  • S. Furukawa, A. Tsuchiya, Y. Kojima, M. Endo, T. Komatsu, Raney-Type Ru-La Catalysts Prepared from a Ru-La-Al Ternary Alloy: Enhanced Activity in Ammonia Decomposition, Chem. Lett., 45(2), 158-160 (2016).
  • T. Aoki, H. Miyaoka, H. Inokawa, T. Ichikawa, Y. Kojima, Activation on Ammonia Absorbing Reaction for Magnesium Chloride, J. Phys. Chem. C, 119, 26296-26302 (2015).
  • K. Goshome, H. Miyaoka, H. Yamamoto, T. Ichikawa, T. Ichikawa, Y. Kojima, Ammonia Synthesis via Non-Equilibrium Reaction of Lithium Nitride in Hydrogen Flow Condition, Mat. Tra. 56(3), 410-414 (2015).
  • H. Miyaoka, K. Nakajima, S. Yamaguchi, T. Aoki, H. Yamamoto, T. Okuda, K. Goshome, T. Ichikawa, Y. Kojima, Catalysis of Lithium Chloride and Alkali Metal Borohydrides on Hydrogen Generation of Ammonia and Lithium Hydride System, J. Phys. Chem. C, 119, 19922-19927 (2015).
  • T. Aoki, H. Miyaoka, H. Inokawa, T. Ichikawa, Y. Kojima, Activation on Ammonia Absorbing Reaction for Magnesium Chloride, J. Phys. Chem. C, 119(47), 26296-26302 (2015).
  • H. Miyaoka, K. Nakajima, S. Yamaguchi, T. Aoki, H. Yamamoto, T. Okuda, K. Goshome, T. Ichikawa, Y. Kojima, Catalysis of Lithium Chloride and Alkali Metal Borohydrides on Hydrogen Generation of Ammonia and Lithium Hydride System, J. Phys. Chem. C, 119(34), 19922-19927 (2015).
  • A. Yamane, F. Shimojo, T. Ichikawa, Y. Kojima, Cation/Anion Dependence of Metal Ammine Borohydrides/Chlorides studied by Ab Initio Calculations, Comput. Theor. Chem., 1039, 71-74 (2014).
  • T. Aoki, T. Ichikawa, H. Miyaoka, Y. Kojima, Thermodynamics on Ammonia Absorption of Metal Halide and Borohydride, J. Phys. Chem. C, 118, 18412-18416 (2014).

(3)有機ハイドライドの製造・利用技術

【電解合成】

  • Yuta. Inami, Hitoshi. Ogihara, Ichiro. Yamanaka, Effects of Carbon Supports on Ru Electrocatalysis for the Electrohydrogenation of Toluene to Methylcyclohexane, Electrocatalysis, 9(2), 204–211 (2018).
  • Eiji. Higuchi, Yousuke. Ueda, Masanobu. Chiku, Hiroshi. Inoue, Electrochemical Hydrogenation Reaction of Toluene with PtxRu Alloy Catalysts-Loaded Gas Diffusion Electrodes, Electrocatalysis, 9(2), 226-235 (2018).
  • K. Nagasawa, Y. Sawaguchi, A. Kato, Y. Nishiki, S. Mitsushima, Rate-Determining Factor of the Performance for Toluene Electrohydrogenation Electrolyzer, Electrocatalysis, 8(2), 164-169 (2017).
  • K. Nagasawa, A. Kato, Y. Nishiki, Y. Matsumura, M. Atobe, S. Mitsushima, The Effect of Flow-Field Structure in Toluene Hydrogenation Electrolyzer for Energy Carrier Synthesis System, Electrochim. Acta, 246, 459-465 (2017).
  • Yuta. Inami, Hitoshi. Ogihara, Ichiro. Yamanaka, Selective Electrohydrogenation of Toluene to Methylcyclohexane using Carbon-Supported Non-Platinum Electrocatalysts in the Hydrogen Storage System, Chem. Select, 2(5), 1939-1943 (2017).
  • K. Takano, H. Tateno, Y. Matsumura, A. Fukazawa, T. Kashiwagi, K. Nakabayashi, K. Nagasawa, S. Mitsushima, M. Atobe, Electrocatalytic Hydrogenation of Toluene Using a Proton Exchange Membrane Reactor, Bull. Chem. Soc. Jpn., 89(10), 1178-1183 (2016).
  • K. Nagai, K. Nagasawa, S. Mitsushima, OER Activity of Ir-Ta-Zr Composite Anode as a Counter Electrode for Electrohydrogenation of toluene, Electrocatalysis, 7, 441-444 (2016).
  • K. Takano, H. Tateno, Y. Matsumura, A. Fukazawa, T. Kashiwagi, K. Nakabayashi, K. Nagasawa, S. Mitsushima, M. Atobe, Electrocatalytic Hydrogenation of o-Xylene in a PEM Reactor as a Study of a Model Reaction for Hydrogen Storage, Chem. Lett., 45, 1437-1439 (2016).
  • S. Mitsushima, Y. Takakuwa, K. Nagasawa, Y. Sawaguchi, Y. Kohno, K. Matsuzawa, Z. Awaludin, A. Kato, Y. Nishiki, Membrane Electrolysis of Toluene Hydrogenation with Water Decomposition for Energy Carrier Synthesis. Electrocatalysis, 7, 127-131 (2016).

【脱水素】

  • Y. Sugiura, T. Nagatsuka, K. Kubo, Y. Hirano, A. Nakamura, K. Miyazawa, Y. Iizuka, S. Furuta, H. Iki, T. Higo, Y. Sekine, Dehydrogenation of Methylcyclohexane over Pt/TiO2–Al2O3 catalysts, Chem. Lett., 46(11), 1601-1604 (2017).
  • A. Nakano, S. Manabe, T. Higo, H. Seki, S. Nagatake, T. Yabe, S. Ogo, T. Nagatsuka, Y. Sugiura, H. Iki, Y. Sekine, Effects of Mn addition on dehydrogenation of methylcyclohexane over Pt/Al2O3 catalyst, Appl. Catal. A: Gen., 543, 75-81 (2017).
  • Koji. Kida, Yasushi. Maeta, Katsunori. Yogo, Preparation and gas permeation properties on pure silica CHA-type zeolite membranes, Journal of Membrane Science, 522, 363-370 (2017).
  • S. Nagatake, T. Higo, S. Ogo, Y. Sugiura, R. Watanabe, C. Fukuhara, Y. Sekine, Dehydrogenation of methylcyclohexane over Pt/TiO2 catalyst, Catal. Lett., 146(1), 54-60 (2016).
  • K. Haraya, M. Yoshimune, Evaluation of Membrane Separation Processes for Recovery and Purification of Hydrogen Derived from Dehydrogenation of Methylcyclohexane, J. Jpn. Petrol. Inst., 59, 299-306 (2016).
  • Xiao-Liang. Zhang, Kazuki. Akamatsu, Shin-ichi. Nakao, Hydrogen Separation in Hydrogen–Methylcyclohexane–Toluene Gaseous Mixtures through Triphenylmethoxysilane-Derived Silica Membranes Prepared by Chemical Vapor Deposition, Ind. Eng. Chem. Res., 55 (18), 5395–5402 (2016).
  • L. Qiu, I. Kumakiri, K. Tanaka, H. Kita, Dehydration Performance of Sodalite Membranes Prepared by Secondary Growth Method, Membrane, 40 (6), 349-354 (2015).
  • H. Nagasawa, T. Niimi, M. Kanezashi, T. Yoshioka, T. Tsuru, Modified Gas-Translation Model for Prediction of Gas Permeation through Microporous Organosilica Membranes, AIChE J., 60(12), 4199-4210 (2014).

(4)液化水素の利用技術

【ローディングシステム】

  • 猪股昭彦, 梅村友章, 河合務, 成尾芳博, 丸祐介, 千田哲也, 武田実, 液化水素用緊急離脱機構の熱応力特性, 日本マリンエンジニアリング学会誌, 54(1), 97-102 (2019).

【水素燃焼】

  • Remi. Konagaya, Ken. Naitoh, Kohta. Tsuru, Yasuo. Takagi, Yuji. Mihara, Unsteady three-dimensional computations of the penetration length and mixing process of various single high-speed gas jets for engines, SAE Technical Paper 2017-01-0817, 1-18. (2017).
  • Yasuo. Takagi, Hiroki. Mori, Yuji. Mihara, Nobuyuki. Kawahara, Eiji. Tomita, Improvement of Thermal Efficiency and Reduction of NOx Emissions by Burning a Controlled Jet Plume in High-pressure Direct-injection Hydrogen Engines, International Journal of Hydrogen Energy, 42(41), 26114-26122 (2017).
  • Kazi. Mostafijur. Rahman, Nobuyuki. Kawahara, Daichi. Matsunaga, Eiji. Tomita, Yasuo. Takagi, Yuji. Mihara, Local fuel concentration measurement through spark-induced breakdown spectroscopy in a direct-injection hydrogen spark-ignition engine, International Journal of Hydrogen Energy, 41,14283-14292 (2016).
  • 高木靖雄, 森裕樹, 中川研司、三原雄司, 冨田栄二, 河原伸幸, 熱効率向上を指向した噴射時期と噴流形状による高圧筒内直接噴射水素エンジンの熱効率向上に関する研究, 自動車技術会論文集, 47(3), 705-710, (2016).
  • A. Horikawa, K. Okada, M. Kazari, H. Funke, J. Keinz, K. Kusterer, A. Ayed, Application of Low NOx Micro-Mix Hydrogen Combustion to Industrial Gas Turbine Combustor and Conceptual Design, Proceedings of IGTC 2015 Tokyo, Japan, 141-146 (2015).

(5)エネルギーキャリアの安全性評価

  • J. Nakayama, H. Aoki, T. Homma, N. Yamaki, A. Miyake, Thermal hazard analysis of a dehydrogenation system involving methylcyclohexane and toluene, J. Therm. Anal. Calorim. 133(1), 805–812 (2018).
  • J. Sakamoto, H. Misono, J. Nakayama, N. Kasai, T. Shibutani, A. Miyake, Evaluation of safety measures of a hydrogen fueling station using physical modeling, Sustainability, 10(11), 3846 (2018).
  • M. Kodoth, S. Aoyama, J. Sakamoto, N. Kasai, T. Shibutani, A. Miyake, Evaluating uncertainty in accident rate estimation at hydrogen refuelling station using time correlation model, International Journal of Hydrogen Energy, 43(52), 23409–23417 (2018).
  • 小野, 恒見, 日米欧における水素ステーションのリスク管理手法の比較, 日本リスク研究学会誌, 27(2), 63-69 (2018).
  • 吉田, 吉田, 有機ハイドライドおよびその脱水素体による水素ステーション周辺住民への慢性健康影響リスクの推定, 環境科学会誌, 31(4), 164‒177 (2018).
  • K. Tsunemi, K. Yoshida, T. Kihara, T. Saburi, K. Ono, Screening-Level, Risk Assessment of a Hydrogen Refueling Station that Uses Organic Hydride, Sustainability, 10(12), 4477 (2018).
  • J. Nakayama, H. Misono, J. Sakamoto, N. Kasai, T. Shibutani, A. Miyake, Simulation-based safety investigation of a hydrogen fueling station with an on-site hydrogen production system involving methylcyclohexane, Int. J. Hydrog. Energy 42(15), 10636-10644 (2017).
  • S. Hienuki, Environmental and Socio-Economic Analysis of Naphtha Reforming Hydrogen Energy Using Input-Output Tables: A Case Study from Japan, Sustainability, 9(8), 1376 (2017).
  • 木原, 牧野, 小野, 佐分利, 久保田, 恒見, 和田, 有機ハイドライド型水素ステーションの漏洩頻度のベイズ推定, 安全工学, 55(4), 245-254 (2017).
  • K. Tsunemi, K. Yoshida, M. Yoshida, E. Kato, A. Kawamoto, T. Kihara, T. Saburi, Estimation of consequence and damage caused by an organic hydride hydrogen refueling station, Int. J. of Hydrogen Energy, 42(41), 26175-26182 (2017).
  • J. Sakamoto, R. Sato, J. Nakayama, N. Kasai, T. Shibutani, A. Miyake, Leakage-type-based analysis of accidents involving hydrogen fueling stations in Japan and USA, International Journal of Hydrogen Energy, 41(46), 21564-21570 (2016).
  • 布施正暁, 水素輸送のリスク評価における現状と課題, 日本LCA学会誌, 12(3), 190-195 (2016).

(6)その他

  • X. -L. Zhang, H. Yamada,T. Saito,T. Kai, K. Murakami, M. Nakashima, J. Ohshita, K. Akamatsu, S. Nakao, Development of hydrogen-selective triphenylmethoxysilane-derived silica membranes with tailored pore size by chemical vapor deposition, J. Membrane Sci., 499, 28-35 (2016).

▲ ページのトップへ戻る