[Development and recycling of materials] Year Started : 2024

Koki Ikemoto

Development of materials for cyclic utilization of transition metals by designing charge-enclosed ligand fields

Grant No.:JPMJPR24M1
Researcher
Koki Ikemoto

Associate Professor
School of Science
The University of Tokyo

Outline

Metal sustainability is an important concept from the viewpoint of how metals can be effectively utilized in our daily lives. As such, this project aims to develop materials for cyclic utilization of transition metals by designing charge-enclosed ligand fields with compact nitrogen coordination sites in a macrocyclic fashion. While pioneering the science of transition metal chemistry with unusual coordination environments, such as pentagonal bipyramidal seven-coordination geometries, this project will create functional metal complexes that realize highly efficient and selective precious metal recycling.

Ryo Ohtani

Innovation in ferroelectric materials using ion conduction

Grant No.:JPMJPR24M2
Researcher
Ryo Ohtani

Associeate Professor
Faculty of Science
Kyushu University

Outline

Polar materials consisting of noncentrosymmetric structures exhibit excellent functionality such as ferroelectricity, piezoelectricity, pyroelectricity, and nonlinear optical properties. It is common idea that ferroelectrics are generally insulators, and it has been thought that conductors do not exhibit ferroelectricity. In this research, to overturn this conventional idea, I attempt to realize new physical properties in which polarity and conducting ions are strongly correlated by synthesizing new ion conductors with polar skeletons.

Yukiya Kitayama

Resource Circulation Capsules Utilizing Ubiquitous Resources

Grant No.:JPMJPR24M3
Researcher
Yukiya Kitayama

Associate Professor
Graduate School of Engineering
Osaka Metropolitan University

Outline

In recent years, the problem of marine microplastics has been recognized as a pressing issue to be solved worldwide, and the development of innovative technologies to solve this problem is required. In this study, we will develop resource-recycling polymer capsules that are degraded in nature and return to natural molecules with low environmental impact utilizing lignin known as a ubiquitous material that is abundant in nature.

Yohei Shimizu

Development of degradable NO-peptoid using biomass resources

Grant No.:JPMJPR24M4
Researcher
Yohei Shimizu

Associate Professor
Faculty of Science
Hokkaido University

Outline

Polymers are essential materials in society, yet many of them are resistant to degradation and are regarded as one of the factors causing environmental issues. This research aims to develop a novel degradable polymer named “NO peptoid,” using carboxylic acid, a type of biomass resource, as the raw material. Furthermore, a degradation method based on the structural characteristics of NO peptoids will be developed to establish foundational technologies for their use in resource recycling.

Yuta Takano

Recyclable mesoscopic particle materials created by enzymatic degradation

Grant No.:JPMJPR24M5
Researcher
Yuta Takano

Associate Proffesor
Research Institute for Electronic Science
Hokkaido University

Outline

A method for creating environmentally harmonious mesoscopic nanoparticle materials (ms particles) is aimed to be established using an innovative microparticle generation technique that utilizes enzymatic degradation. Specifically, metal nanoparticle assemblies and molecular catalyst nanoparticles will be developed using raw materials derived from non-edible biomass and waste, enabling the realization of new functional expressions of ms particles. The ms particles generated by this method possess enzyme-degradable linking sites, making them promising as environmentally harmonious nanomaterials that can be easily decomposed and recycled after use.

Takaya Terashima

Self-Assembled Polymer Materials with Programmed Resource Circulation

Grant No.:JPMJPR24M6
Researcher
Takaya Terashima

Associate Professor
Graduate School of Engineering
Kyoto University

Outline

In this work, we design amphiphilic polymers with reversible formation and decomposition properties by using ubiquitus natural compounds and common chemical compounds to produce self-assembed polymer materials with programmed resource circulation. We aim at the creation of functional materials compatible with environmentally friendly resource circulation by developing chemically recycling technologies to decompose and reconstruct materials and biodegradation or decomposision methodologies in natural environments including soils, oceans, and lakes.

Yoshihiro Nishimoto

The development of fluorine-resource-circulation organic synthesis via cleavage/re-formation of C-F bond

Grant No.:JPMJPR24M7
Researcher
Yoshihiro Nishimoto

Associate Professor
Graduate School of Engineering
The University of Osaka

Outline

This project will develop highly efficient synthesis of high-value fluorine compounds based on the “fluorine recycling” strategy, in which the cleavage and reforming of carbon-fluorine bonds is the key. Also, the resourcing and upgrading of PFAS by syntheses of high-value fluorine compounds from PFAS, that are environmentally problematic substances, will be established. I aim to achieve “fluorine neutral” for sustainable society and industry through organic synthetic reactions that combine high-efficiency synthesis and resourcing/upgrading.

Tomoya Higo

Development of advanced functional semimetals based on topology and magnetism

Grant No.:JPMJPR24M8
Researcher
Tomoya Higo

Project Associate Professor
Graduate School of Science
The University of Tokyo

Outline

Topological semimetals, even when using abundant elements, are expected to exhibit excellent functionalities suitable for electronic device applications, such as large electrical, thermal, and optical responses, as well as high electron mobility, which are originating from their unique band structures. In this project, aiming to build a sustainable and progressive society, we will develop magnetic topological semimetals that are robust against impurities and disorder, and find emergent electronic functions, with the goal of utilizing them as versatile, high-performance electronic materials that overcome resource and environmental constraints.

Satoshi Honda

Development of Photo- and Acousto-Dynamic Recyclable Materials Engineering toward the Future of Cross Reality

Grant No.:JPMJPR24M9
Researcher
Satoshi Honda

Assistant Professor
Graduate School of Arts and Sciences
The University of Tokyo

Outline

This project firstly aims to develop photo- and acousto- dynamic functional materials (PADMs) whose mechanical properties can be reversibly controlled by applying light and high-intensity focused ultrasound (HIFU). Next, the project aims to develop a method for dismantling adhesives using HIFU and a method for re-attaching adherends using PADMs. Furthermore, the project aims to fabricate composite materials consisting of PADMs and quantum dots. Based on these composites, a methodology for expanding a three-dimensional confined space in which light and HIFU are simultaneously applied, and a method for controlling mechanical properties inside the generated confined space will be pursued.

Yumi Yakiyama

Creation of Functional Crystals that Convert Ubiquitous Molecules into Ferroic Materials

Grant No.:JPMJPR24MA
Researcher
Yumi Yakiyama

Associate Professor
Graduate School of Engineering
Osaka University

Outline

The lack of spatial inversion symmetry in solid materials is the key to expressing unique physical properties. However, it is difficult to construct such polar structures selectively using small organic molecules. In this project, various functional host crystals, which incorporate a variety of simple and ubiquitous molecules and arrange them in polarity, will be prepared. This project aims to create ‘∞ on 1’ resource-recycling crystalline materials that can be freely created into various ferroic materials, which will be realized through precise analyses and the functional developments of the polar crystals.

Sho Yamaguchi

Development of Metal Carbide Nanoparticle Catalysts for Liquid-phase Hydrogenation Reactions

Grant No.:JPMJPR24MB
Researcher
Sho Yamaguchi

Assistant Professor
Graduate School of Engineering Science
Osaka University

Outline

This work presents the development of metal carbide nanoparticles and their catalytic application to the liquid-phase hydrogenation reactions of organic compounds. Recently, we have reported the nickel carbide nanoparticles as a highly active heterogeneous catalyst for the hydrogenation of nitriles to primary amines; in particular, the catalytic activity of nickel carbide nanoparticles is significantly superior to that of conventional nickel nanoparticles. This unique catalytic behavior of metal carbide nanoparticles provides a new strategy for the efficient hydrogenation of organic compounds and greatly contributes to the establishment of future green and sustainable reaction processes.

Quick Access

Program

  • CREST
  • PRESTO
  • ERATO
  • ACT-X
  • ALCA
  • CRONOS
  • AIP Network Lab
  • Global Activities
  • Diversity
  • SDGs
  • OSpolicy
  • Yuugu
  • Questions