エネルギーキャリア

最終更新日:2017年4月25日

戦略的イノベーション創造プログラム(SIP)
課題「エネルギーキャリア」査読付論文リスト

(1)太陽熱を利用した水素製造

【熱利用水素製造】

  • L. Meng, M. Kanezashi, X. Yu, T. Tsuru, Enhanced Decomposition of Sulfur Trioxide in the Water-Splitting Iodine-Sulfur Process via a Catalytic Membrane Reactor, J. Mater. Chem. A, 4, 15316-15319 (2016).
  • A. Ikeda, M. Nomura, 炭化水素類分離のためのアモルファスシリカベース分離膜の作製, J. Jpn. Petrol. Inst., 59(6), 259-265 (2016)
  • 八巻徹也、小平岳秀、澤田真一、田中伸幸、久保真治、野村幹弘、放射線グラフト重合法による膜ブンゼン反応用カチオン交換膜の開発、膜(Membrane), 41(3), 114-120 (2016).
  • 金指正言, 都留稔了, 硫酸分解のための膜分離プロセスの開発, 膜 (MEMBRANE), 41, 102-107, (2016).
  • L. Meng, M. Kanezashi, T. Tsuru, Catalytic Membrane Reactors for SO3 Decomposition in Iodine-Sulfur Thermochemical Cycles: A Simulation Study, Int. J. Hydrogen Energy, 40, 12687-12696 (2015).
  • L. Meng, M. Kanezashi, J. Wang, T. Tsuru, Permeation Properties of BTESE-TEOS Organosilica Membranes and Application to O2/SO2 Gas Separation, J. Membr. Sci., 496, 211-218 (2015).
  • T. Kawada, T. Tajiri, S. Takeshima, M. Machida, Structure and SO3 Decomposition Activity of CeVO4/SiO2 Catalysts for Solar Thermochemical Water Splitting Cycles, International Journal of Hydrogen Energy, 40, 10726-10733 (2015).
  • T. Kawada, S. Hinokuma, M. Machida, Structure and SO3 Decomposition Activity of nCuO-V2O5/SiO2 (n=0, 1, 2, 3 and 5) Catalysts for Solar Thermochemical Water Splitting Cycles, Catalysis Today, 242, Part B, 268-273 (2015).
  • T. Kawada, H. Yamashita, Q-X. Zheng, M. Machida, Hydrothermal Synthesis of CuV2O6 Supported on Mesoporous SiO2 As SO3 Decomposition Catalysts for Solar Thermochemical Hydrogen Production, International Journal of Hydrogen Energy, 39, 20646-20651 (2014).

(2)アンモニアの製造・利用技術

【燃料電池】

  • K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Ammonia Decomposition over Nickel Catalysts Supported on Rare-Earth Oxides for the On-Site Generation of Hydrogen, ChemCatChem, 8, 2988-2995 (2016).
  • K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Additive effect of alkaline earth metals on ammonia decomposition reaction over Ni/Y2O3 catalysts, RSC Adv., 6, 85142-85148 (2016).
  • A. Srifa, K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, COx-free hydrogen production via ammonia decomposition over molybdenum nitride-based catalysts, Catal. Sci. Technol., 6, 7495-7504 (2016).
  • Y. Katayama, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Enhanced supply of hydroxyl species in CeO2-modified platinum catalyst studied by in situ ATR-FTIR spectroscopy, ACS Catal., 6, 2026-2034 (2016).
  • S. Suzuki, H. Muroyama, T. Matsui, K. Eguchi, Effect of carbonate ion species on direct ammonia fuel cell employing anion exchange membrane, J. Electrochem. Soc., 163, F336-F340 (2016).
  • A.F.S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells, J. Power Sources, 305, 72-79 (2016).
  • T. Matsui, S. Suzuki, Y. Katayama, K. Yamauchi, T. Okanishi, H. Muroyama, K. Eguchi, In Situ Attenuated Total Reflection Infrared Spectroscopy on Electrochemical Ammonia Oxidation over Pt electrode in Alkaline Aqueous Solutions, Langmuir, 31, 11717-11723 (2015).
  • J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells, ACS Appl. Mater. Interfaces, 7, 28701-28707 (2015).
  • J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells, ACS Appl. Mater. Interfaces, 7, 7406-7412 (2015).
  • Y. Katayama, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical oxidation of ammonia over rare earth oxide modified platinum catalysts, J. Phys. Chem. C, 119, 9134-9141 (2015).
  • A.F.S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and Catalytic Behaviors of Ni-YSZ Anode for the Direct Utilization of Ammonia Fuel in Solid Oxide Fuel Cells, J. Electrochem. Soc., 162, F1268-F1274 (2015).
  • T. Okanishi, Y. Katayama, H. Muroyama, T. Matsui, K. Eguchi, SnO2-modified Pt electrocatalysts for ammonia-fueled anion exchange membrane fuel cells, Electrochim. Acta, 173, 364-369 (2015).
  • K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Promotion effect of rare-earth elements on the catalytic decomposition of ammonia over Ni/Al2O3 catalyst, Appl. Catal. A: Gen., 505, 77-85 (2015).

【燃焼】

  • A. Hayakawa, T. Goto, R. Mimoto, T. Kudo, H. Kobayashi, NO Formation/reduction Mechanisms of Ammonia/air Premixed Flames at Various Equivalence Ratios and Pressures, Mech. Eng. J., 2, 1, 14-00402 (2015).
  • A. Ichikawa, A. Hayakawa, Y. Kitagawa, K.D.K.A. Somarathne, T. Kudo, H. Kobayashi, Laminar Burning Velocity and Markstein Length of Ammonia/hydrogen/air Premixed Flames at Elevated Pressures, Int. J. Hydrogen Energy, 40, 9570-9578 (2015).
  • A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, H. Kobayashi, Laminar Burning Velocity and Markstein Length of Ammonia/air Premixed Flames at Various Pressures, Fuel, 159, 98-106 (2015).
  • 武石 裕行, 岡南 貴大, 林 潤, 飯野 公夫, 赤松 史光, 酸素富化燃焼におけるアンモニア層流予混合火炎のNOx 生成特性, 日本機械学会論文集, 82, 836, 15-00566 (2016).
  • 武石 裕行,林 潤,河野 翔太,有田 航,飯野 公夫,赤松 史光,酸素富化燃焼におけるアンモニア層流予混合火炎の基礎燃焼特性, 日本機械学会誌, 824, 1-11 (2015).
  • H. Takeishi, J. Hayashi, K. Iino, F. Akamatsu, Combustion Characteristics of Ammonia/N2/O2 mixture in Oxygen-enriched Air Condition, 10th European Conference on Industrial Furnaces and Boilers, (2015).
  • W. Arita, H. Takeishi, J. Hayashi, H. Okanami, K. Iino, and F. Akamatsu, Effects of oxygen concentration on the radiative characteristics of ammonia/N2/O2 laminar premixed flame, International Conference on Power Engineering 2015 (ICOPE2015), CD-ROM, ICOPE-15-1128 (2015).
  • T. Okanami, H. Takeishi, J. Hayashi, W. Arita, K. IINO and F. Akamatsu, Effect of the dielectric barrier discharge on the combustion promotion of ammonia/oxygen/nitrogen premixed gas, International Conference on Power Engineering 2015 (ICOPE2015), CD-ROM, ICOPE-15-1130, (2015).
  • H. Takeishi, J. Hayashi, M. Suzuki, K. Iino, F. Akamatsu, Measurement of Ammonia/N2/O2 Laminar Burning Velocity Under Oxygen-enriched Air Condition, Proc. Grand Renewable Energy, (2014).

【分解・吸着】

  • S. Furukawa, A. Tsuchiya, Y. Kojima, M. Endo, T. Komatsu, Raney-Type Ru-La Catalysts Prepared from a Ru-La-Al Ternary Alloy: Enhanced Activity in Ammonia Decomposition, Chem. Lett., 45(2), 158-160 (2016).
  • T. Aoki, H. Miyaoka, H. Inokawa, T. Ichikawa, Y. Kojima, Activation on Ammonia Absorbing Reaction for Magnesium Chloride, J. Phys. Chem. C, 119, 26296-26302 (2015).
  • H. Miyaoka, K. Nakajima, S. Yamaguchi, T. Aoki, H. Yamamoto, T. Okuda, K. Goshome, T. Ichikawa, Y. Kojima, Catalysis of Lithium Chloride and Alkali Metal Borohydrides on Hydrogen Generation of Ammonia and Lithium Hydride System, J. Phys. Chem. C, 119, 19922-19927 (2015).
  • T. Aoki, T. Ichikawa, H. Miyaoka, Y. Kojima, Thermodynamics on Ammonia Absorption of Metal Halide and Borohydride, J. Phys. Chem. C, 118, 18412-18416 (2014).
  • A. Yamane, F. Shimojo, T. Ichikawa, Y. Kojima, Cation/Anion Dependence of Metal Ammine Borohydrides/Chlorides studied by Ab Initio Calculations, Comput. Theor. Chem., 1039, 71-74 (2014).

(3)有機ハイドライドの製造・利用技術

【電解合成】

  • K. Takano, H. Tateno, Y. Matsumura, A. Fukazawa, T. Kashiwagi, K. Nakabayashi, K. Nagasawa, S. Mitsushima, M. Atobe, Electrocatalytic Hydrogenation of O-Xylene in a PEM Reactor as a Study of a Model Reaction for Hydrogen Storage, Chem. Lett., 45, 1437-1439 (2016).
  • K. Takano, H. Tateno, Y. Matsumura, A. Fukazawa, T. Kashiwagi, K. Nakabayashi, K. Nagasawa, S. Mitsushima, and M. Atobe, "Electrocatalytic Hydrogenation of Toluene Using a Proton Exchange Membrane Reactor," Bull. Chem. Soc. Jpn., 2016, Vol.89, No.10, p.1178-1183.
  • K. Nagai, K. Nagasawa, S. Mitsushima, OER Activity of Ir-Ta-Zr Composite Anode as a Counter Electrode for Electrohydrogenation of Toluene, Electrocatalysis, 7, 441-444 (2016).
  • K. Haraya, M. Yoshimune, Evaluation of Membrane Separation Processes for Recovery and Purification of Hydrogen Derived from Dehydrogenation of Methylcyclohexane, J. Jpn. Petrol. Inst., 59, 299-306 (2016).
  • S. Mitsushima, Y. Takakuwa, K. Nagasawa, Y. Sawaguchi, Y. Kohno, K. Matsuzawa, Z Awaludin, A. Kato, Y. Nishiki, Membrane Electrolysis of Toluene Hydrogenation with Water Decomposition for Energy Carrier Synthesis, Electrocatalysis. 7, 238-131 (2016).

【脱水素】

  • S. Nagatake, T. Higo, S. Ogo, Y. Sugiura, R. Watanabe, C. Fukuhara, Y. Sekine*, Dehydrogenation of methylcyclohexane over Pt/TiO2 catalyst, Catal. Lett., 146(1), 54-60, (2016)."
  • L. Qiu, I. Kumakiri, K. Tanaka, H. Kita, Dehydration Performance of Sodalite Membranes Prepared by Secondary Growth Method, Membrane, 40 (6), 349-354 (2015).
  • H. Nagasawa, T. Niimi, M. Kanezashi, T. Yoshioka, T. Tsuru, Modified Gas-Translation Model for Prediction of Gas Permeation through Microporous Organosilica Membranes, AIChE J., 60(12), 4199-4210 (2014).

(4)液化水素の利用技術

  • Kazi Mostafijur Rahman, N. Kawahara, D. Matsunaga, E. Tomita, Y. Takagi, Y. Mihara, Local fuel concentration measurement through spark-induced breakdown spectroscopy in a direct-injection hydrogen spark-ignition engine, International Journal of Hydrogen Energy, 41-32, 14283-14292, (2016).w
  • A. Horikawa, K. Okada, M. Kazari, H. Funke, J. Keinz, K. Kusterer, A. Ayed, Application of Low NOx Micro-Mix Hydrogen Combustion to Industrial Gas Turbine Combustor and Conceptual Design, Proceedings of IGTC 2015 Tokyo, Japan, pp. 141-146 (2015).

(5)エネルギーキャリアの安全性評価

  • J. Sakamoto, R. Sato, J. Nakayama, N. Kasai, T. Shibutani, A. Miyake, Leakage-type-based analysis of accidents involving hydrogen fueling stations in Japan and USA, Int. J. Hydrogen Energy, 41(46), 21564-21570 (2016).
  • 布施正暁,水素輸送のリスク評価における現状と課題,日本LCA学会誌,12(3),190-195 (2016).

(6)その他

  • X.-L. Zhang, H. Yamada,T. Saito,T. Kai, K. Murakami, M. Nakashima, J. Ohshita, K. Akamatsu, S. Nakao, Development of hydrogen-selective triphenylmethoxysilane-derived silica membranes with tailored pore size by chemical vapor deposition, J. Membrane Sci., 499, 28-35 (2016).

▲ ページのトップへ戻る