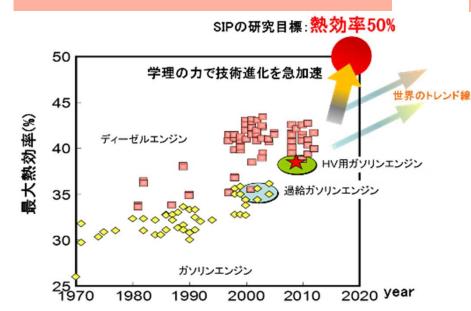
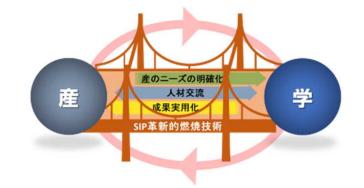


SIP革新的燃焼技術概要



SIP革新的燃焼技術の全体目標


アウトプット目標①

最大熱効率を50%

アウトプット目標②

持続的な産産学学連携の構築

産⇒学: 産の共通ニーズを提示

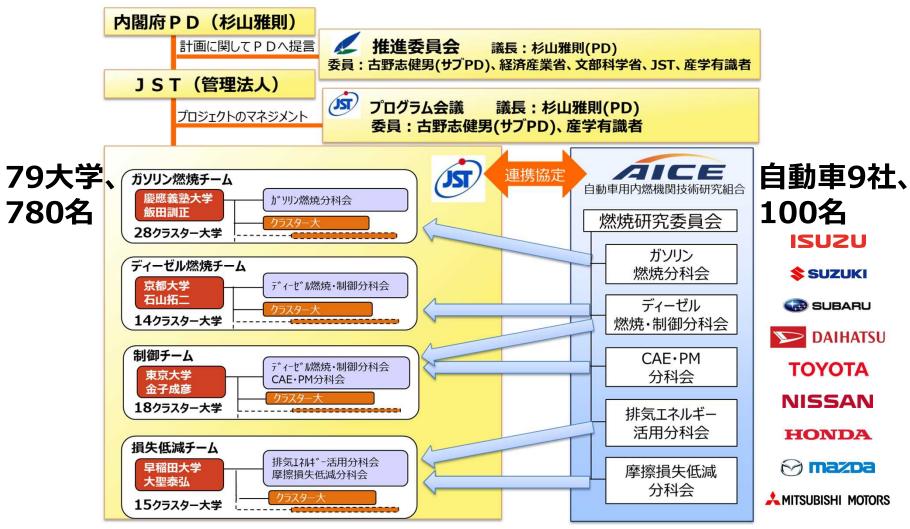
学⇒産: 基礎的知見の提供

学⇔産: 持続的な人材・ニーズ・シーズの行き来

アウトカム目標①

- 長期Iネルギー需給見通しの実現に貢献 (原油換算1039万kL/年の省エネ)
- 温室効果ガス削減目標に貢献

アウトカム目標②


産学連携のモデルケースとして展開し 産業競争力強化に貢献

SIP革新的燃焼技術の研究実施体制

人数は延べ数・およそ。SIPは2018年5月時点

BRIDGE

SIP革新的燃焼技術の拠点

オールジャパンの研究体制

HORIBA

堀場製作所本社•工場内

ディーゼル燃焼チーム 京都エンジン実験 センター

損失低減チーム 早大ラボ

東北大学

明治大学

横浜国立大学 日本大学

ガソリン燃焼チーム

ONO SOKKI

SIPエンジンラボ

小野測器 横浜テクニカルセンター内

制御チーム

東大ラボ

赤字は実機ベースの 研究開発拠点

堀場製作所 (オープンラボ)

福井大学 滋賀県立大学

大阪府立大学 同志社大学

東海大学 海上·港湾·航空技術研究所

宇宙航空研究開発機構

産業技術総合研究所

東京理科大学

北海道大学

上智大学

千葉大学

茨城大学

地図はSIP燃焼への参画機関があるエリアを中心に表示

実機試験ができる4拠点を整備、フル稼働。施設提供2社は、SIP後も協力予定。

鳥取大学

山口大学

九州大学

長崎大学

熊本大学

ガソリン燃焼チーム

「高効率ガソリンエンジンのためのスーパーリーンバーン研究開発」 <研究責任者> 飯田訓正 (慶應義塾大学大学院 理工学研究科 特任教授)

<研究目標と体制>

超希薄・高流動・高EGR条件下で着火可能な点火システムの開発

- ・着火メカニズムの詳細解析
- ・対象条件下に対応する新規点火モデルの提案
- ・強力点火システムの開発

タンブル流の最適化・高強度乱流下での 燃焼現象解明に基づく火炎伝播の促進

- ・火炎伝播メカニズムの詳細解析
- ・対象条件下に対応する新規火炎伝播モデルの提案

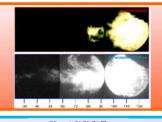
化学反応論的アプローチによるノッキング制御コンセプトの創出


- ・Livengood-wu 積分で対応が困難な条件・領域での解析
- ・反応・圧力伝播等を踏まえた新規ノック発生モデルの提案

壁面熱伝達機構の詳細な解明に基づく冷却損失の低減

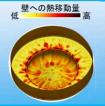
- ・境界層の内部にまで踏み込んだ対流熱伝達解析
- ・エンジン壁面に適合する新規熱伝達モデルの提案

ディーゼル燃焼チーム

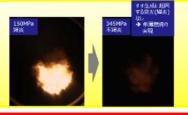

「乗用車用ディーゼルエンジンにおける高度燃焼制御」 <研究責任者> 石山拓二 (京都大学大学院 エネルギー科学研究科 教授)

<研究目標と体制>

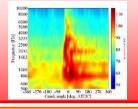
後燃えの所在を突き止め抑制し燃焼を高速化


- ・紫外光計測による燃焼・未燃焼領域の特定
- ・LES数値解析による乱れ付与などの効果予測

噴霧・火炎の制御による冷却損失の低減


- ・熱流束・火炎流動の計測による壁面熱損失の支配要因解明
- ・LES数値解析による噴霧火炎制御の効果予測

超高圧噴射によるPCCI燃焼の 適用範囲拡大・燃焼領域の希薄化


- ・パルス噴射による急激燃焼の抑制
- ・超高圧噴射噴霧の特性解析

放射音 低減Gr.

構造・燃焼両面からの対策によるエンジン放射音の低減

- ・エンジン構造内振動伝達・音放射のモデル化
- ・燃焼パターンの制御による放射音特性の最適化

混合気 制御Gr.

模擬燃焼系 と数値解析 による 混合気 制御法提案

・二つの噴射弁 を備えた 試験機関(DIS) ・CFD計算の 高精度化・ 汎用化と 燃焼法の提案

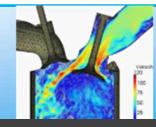
制御チーム

「革新的燃焼技術を具現化するモデリングと制御」 <研究責任者> 金子成彦 (東京大学大学院 工学系研究科 教授)

<研究目標と体制>

モデルベースの制御設計手法構築

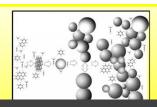
- ・物理に基づいた制御モデルの構築
- ・様々な最新の制御理論を応用したオンボード適合



モデルベースト制御

高速3次元CFDコアソフト開発 および熱効率50%シナリオ検証ソフト開発

- ・均一直交格子法と境界埋め込み法による
- メッシュ作成過程の排除
- ・高速3D計算結果を利用した1Dシミュレーションの精度向上



高速3D計算

PM Gr.

CFD用ガソリンPMモデル構築

- ・モデル開発・最適化のための最先端計測技術の構築
- ・冷間始動を含めたインジェクタノズル出口~ PM生成までのモデリング

PM生成メカニズム

損失低減チーム

ル

有効利用

Gr.

「排気エネルギーの有効利用と機械摩擦損失の低減」 <研究責任者> 大聖泰弘 (早稲田大学 研究院 次世代自動車研究機構 特任研究教授)

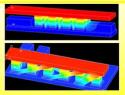
<研究目標と体制>

排気 エネ 過給

排気ターボとコンプレッサの高効率化で総合効率64%を目指す

- ・エネルギー収支の計測とモデル化
- ・脈動や曲がり管の流動を考慮した3Dシミフレーション

排気エネルギー 有効利用と 機械摩擦損失 サブモデルの 検証と統合化


他チームと連携し エンジンシステム としての正味 熱効率を予測

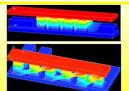
> 空気 排気 燃料 燃料改質

ターホ過給 システムモデル

機械摩擦

損失モデル

改質


排気熱を利用して電場と触媒により 改質しHっやCOを生成して燃焼の改善に役立てる

- ・電場により低温で希薄なガスの改質を可能にする
- ・改質ガスで希薄な燃焼速度の増加を可能にする

排気熱を利用した熱電素子による 発電効率と範囲の拡大を実現する

- ・標準素子に対して開発した素子の高性能化を図る
- ・実機での装着時の発電特性を評価しモデル化する

研究終了

成果展開/

機械摩擦 損失低減 Gr.

エンジンの運動部の主要コンポーネントで発生する 摩擦損失を半減する

- ・新たな低摩擦性状の潤滑表面と潤滑油を開発する
- ・ナノからマクロにわたる摩擦モデルを構築する。

Innovative Combustion Technology

燃焼モデル

伝熱モデル

ノックモデル