SIP “Enhancement of Social Resiliency against Natural Disasters” supports the development of a new technology for disaster management by the local government and the implementation and spread of research products in society.

For more information

Tsunami inundation forecast system
Research Center for Reinforcement of Resilient Function
National Research Institute for Earth Science and Disaster Resilience (NIED)
Aoi, Suzuki
Tel: +81-29-851-1611

“Nige-Tore” App for Tsunami Evacuation Drill
Research Center for Disaster Reduction Systems
Disaster Prevention Research Institute
Kyoto University
Yamori, Lee
Tel: +81-774-38-4273

What is the real-time tsunami inundation forecast system?
Use of off-shore tsunami data observed by the seafloor observation network (S-net*)
(*Large-scale dense (150 observation stations) real-time seafloor observation network for earthquakes and tsunamis on the Pacific coast from Chiba prefecture to Hokkaido prefecture)
Detect tsunami occurrence within a few minutes just after an earthquake, along with high-precision (10 m mesh) forecast inundation range and depth

Contribute to resident safety evacuation and resident rapid relief activity based on high-precision (10 m mesh) tsunami inundation forecast information within a few minutes just after an earthquake

Source: Yamada Town, Iwate Prefecture
From forecast of inundation depth with high precision to the linked tsunami evacuation drill

- **Tabletop exercise in Chiba prefecture**
 - Construction of a tsunami forecast system that uses off-shore tsunami data observed by S-net
 - Establishment of utilization methods for real-time forecast information for effective response by local governments

- **Tsunami evacuation drill for Kamogawa city**
 - Utilizing tsunami inundation forecast information as follows
 - Understanding the predicted inundation
 - Securing the safety of firefighting activities
 - Reporting to disaster response agencies

- **“Nige-Tore” App for Tsunami Evacuation Drill**

 Arrival time and coastal height for each city

<table>
<thead>
<tr>
<th>Location</th>
<th>Arrival Time</th>
<th>Coastal Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiba</td>
<td>9.9</td>
<td>10.3</td>
</tr>
<tr>
<td>Kenchū</td>
<td>5.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Harajuku</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Sōma</td>
<td>5.4</td>
<td>5.7</td>
</tr>
<tr>
<td>Higashi</td>
<td>7.4</td>
<td>7.4</td>
</tr>
<tr>
<td>Ōmura</td>
<td>10 minutes</td>
<td>8.5</td>
</tr>
<tr>
<td>Kōtō</td>
<td>8.8</td>
<td>8.8</td>
</tr>
<tr>
<td>Aoba</td>
<td>8.9</td>
<td>8.3</td>
</tr>
<tr>
<td>Chiba</td>
<td>5.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

 Forecast inundation range and depth with high precision (10 m mesh)

 Tsunami inundation forecast is established for the first time.