公開用

終了報告書

SIP(戦略的イノベーション創造プログラム)

課題名「エネルギーキャリア」

研究開発テーマ名「分散型エネルギー利用のための合成システム開発」 研究題目「アンモニア吸蔵材の開発」

研究開発期間:平成26年9月1日~平成28年3月31日 研究担当者:小島 由継 所属研究機関:広島大学

目次

1. 本研究の目的	1
2. 研究開発目標と平成27年度末マイルストーン	2
3. 研究開発実施内容	3
3-1. アンモニア吸蔵材の文献調査・データベース化	3
3-2. NaBH ₄ のアンモニア吸蔵特性の評価	6
3-3.アンモニア吸蔵/放出サイクルにおける NaBH4の安定性評価	7
3-4. LiBH ₄ -NaBH ₄ 混合物のアンモニア吸蔵特性の評価	8
3-5. まとめ	10
3-6. 今後の課題	10
4. 外部発表実績	11
5. 特許出願実績	11
6. 参考文献	11

図表一覧

- 表1. イオン液体のアンモニア吸蔵特性
- 表 2. イオン液体の化学名および構造
- 表 3. 固体材料のアンモニア吸蔵特性
- 図 1. SrCl₂アンミン錯体の van't Hoff プロット
- 図 2. MgCl₂アンミン錯体の van't Hoff プロット
- 図 3. NaBH₄のアンモニア吸蔵 PCT (Pressure-Composition-Temperature) 曲線
- 図 4. NaBH₄のアンモニア吸蔵プラトー圧付近の圧力・組成拡大図
- 表 4. NaBH₄のアンモニア吸蔵プラトー圧
- 図 5. アンモニア吸蔵量 0 ~ 0.5 mol NH₃ / mol NaBH₄ の van't Hoff plot
- 図 6. アンモニア吸蔵量 0.5~2.0 mol NH₃ / mol NaBH₄の van't Hoff plot
- 図 7. ガスサンプリングシステム
- 図 8. NaBH4 の Ar 気流中の昇温プロファイル
- 図 9. 初回 NH₃ 吸蔵/放出後の気相分析(GC)プロファイル
- 図 10. NH₃ 吸蔵時に発生した水素量
- 表 5. NH₃ 吸蔵時に発生した水素量
- 図 11. NH₃ 放出時に発生した水素量
- 表 6. NH₃ 放出時に発生した水素量
- 図 12. NH₃ 吸放出 10 サイクル後の固相 X 線回折
- 図 13. LiBH₄、NaBH₄、LiBH₄-NaBH₄(1:1 mol)混合物のX線回折
- 図 14. LiBH₄-NaBH₄ (1:1 mol) 混合物のアンモニア吸蔵放出前後の X 線回折
- 図 15. 20℃のアンモニア吸蔵 PCT 曲線
- 図 16. LiBH₄-NaBH₄(1:1 mol)の-10, 0, 10, 20℃のアンモニア吸蔵 PCT 曲線
- \boxtimes 17. LiBH₄-NaBH₄ (1:1 mol) \mathcal{O} van't Hoff plot
- 図 18. 60℃のアンモニア吸蔵 PCT 曲線

1. 本研究の目的

効率的なアンモニア濃縮分離技術の確立:

従来法の Haber-Bosch 法では反応後の高圧ガスを冷却してアンモニアを液化分離して いる。本開発では低圧の反応ガスのため、エネルギー効率の観点から、加圧することなく アンモニアを分離回収する技術が必要となる。アンモニア合成反応においては平衡制約か ら、反応条件を低圧・低温化すると1パスの転化率が低下し、リサイクルガス量が増大す る。したがって、反応生成ガスから効率的にアンモニアを分離回収する技術が必要となる。 本研究開発では、アンモニアを選択的に濃縮分離できるアンモニア吸蔵材料の検討を行う。

アンモニアがハロゲン化物や水素化ホウ素化合物と安定な錯体を作ることや、イオン液 体へ溶解したり、吸蔵無機多孔体表面へ吸着することによって、材料中に貯蔵されること は知られているが、これをアンモニアの吸蔵分離材料として使うことで、冷凍システムが 無くても常圧、常温でアンモニアを濃縮することが可能であり、コンパクトにアンモニア を貯蔵可能となる。アンモニア吸蔵材料はアンモニアガスを吸蔵時に発熱し、アンモニア 放出時に吸熱する。その熱量はアンモニアガスの液化熱よりも大きい。アンモニア吸蔵材 料のアンモニア平衡圧は温度に依存し、生成熱(熱量)、とエントロピー変化に関係する。 エントロピー変化は材料によって大きく変化しないため、アンモニア平衡圧は生成熱が大 きいほど低下傾向にある。従って、アンモニア吸蔵分離材料としての要求特性として以下 のような項目が挙げられる。

1.重量アンモニア密度と体積アンモニア密度が高い。

2.平衡蒸気圧が低い(生成熱の絶対値が小さい)。

3.活性化が容易である。

4.アンモニアの吸蔵放出速度が速い

5.耐久性に優れている。

6.安全である。

7.材料が安価である。

種々の電解質(ハロゲン化物、ホウ素化合物等)、無機多孔体、およびそれらの複合物質 にアンモニアを吸蔵させて平衡蒸気圧を求め、蒸気圧の温度変化からアンモニア吸蔵時の 生成熱を得る。アンモニア吸蔵速度の評価技術を確立して吸蔵速度を求め、触媒添加、複 合化等により吸蔵速度の改良を研究する。それらの研究結果をアンモニア濃縮システム開 発の観点から議論して最適なアンモニア吸蔵分離材料を開発する。 2. 研究開発目標と平成27年度末マイルストーン

タイムスケジュール

研究開発項目	初年度 (H26.7~H27.3)	2年度 (H27.4~H28.3)	3年度 (H28.4~H29.3)	4年度 (H29.4~H30.3)	5年度 (H30.4~H31.3)
項目1 濃縮分離用アン モニア吸蔵材料の基礎 開発	(4.0) アンモニア吸蔵 材料の調査	(7.0) アンモニア吸蔵 材料の熱力学特 性(平衡圧、生成 熱等)評価・解析	(7.0) 化学構造と熱 力学特性との 関係検討	(7.0) 熱力学特性制 御技術開発	(7.0) 開発した制御 技術を用いた 材料の高性能 化

研究開発計画

平成26年度:

アンモニア濃縮分離技術に用いるアンモニア吸蔵材の候補として無機塩やイオン液体 等の吸蔵特性に関して文献等を中心に調査を行うとともに、他グループの研究成果を 反映して候補となる吸蔵材のデータを蓄積する。

マイルストーン:アンモニア吸蔵材の調査

平成27年度: アンモニア吸蔵材候補の特性測定に必要な装置を導入し、ホウ素系化合物、ハロゲン化物、イオン液体等の吸蔵特性の測定を行う。

マイルストーン:生成熱の大きさが 45 kJ/mol-NH3以下

平成28年度: 化学構造と熱力学特性(生成熱やエントロピー)の間の関係を系統的 に研究する。

マイルストーン:生成熱の大きさが 40 kJ/mol-NH₃以下

平成29年度: 複合化等による熱力学特性制御技術を開発する。

マイルストーン:生成熱の大きさが35kJ/mol-NH3以下

平成30年度: 熱力学特性制御技術により、生成熱を改良する。

マイルストーン:生成熱の大きさが 30 kJ/mol-NH₃以下

平成27年度末マイルストーン 生成熱の大きさが45 kJ/mol-NH₃以下

 $\mathbf{2}$

3. 研究開発実施内容

3-1. アンモニア吸蔵材の文献調査・データベース化

3-1-1. アンモニア吸蔵材の文献調査

検索サイト「Google scholar」、「Science Direct」、「ACS Publications」を主に利用して文献 調査を行った。文献調査総数 136 報、出版年数 1925 年~2015 年分までの関連文献を調査 した。材料別の文献調査件数は下記のとおりである。

・イオン液体に関連する文献 17 報

・その他液体系アンモニア吸蔵材料(水、メタノール、エタノール、リン酸水溶液、硫酸塩水溶液など)に関連する文献 30 報

・ハロゲン化物系アンモニア吸蔵材料に関連する文献 32 報

・その他固体アンモニア吸蔵材料に関連する文献 57 報

3-1-2. アンモニア吸蔵材特性のデータベース化

アンモニアを選択的に濃縮分離できるアンモニア吸蔵材料の検討を行うため、以下の特性をデータベース化した。各材料のアンモニア吸蔵による発熱反応の反応エンタルピー(生成熱) $\Delta H(kJ/mol)$ 、反応エントロピー $\Delta S(J/mol K)$ 、反応温度 $T(^{\circ}C)$ 、反応圧力 P(MPa)および NH₃吸蔵量 x(wt%)。また、アンモニア濃縮分離技術に用いるアンモニア吸蔵材料に求められる特性を考慮し、反応温度 $T=20 ^{\circ}C$ 以上および反応圧力 Pが 0.1 MPa 付近の NH₃吸蔵量 x(wt%)を記載した。各材料はアンモニア吸蔵により発熱するので、 ΔH は負の 値、また、アンモニア吸蔵によりエントロピーは減少するため、 ΔS は負の値とした。

表1にはイオン液体のアンモニア吸蔵特性,表2にはイオン液体の化学名および構造,表3には固体材料のアンモニア吸蔵特性を示した。

参考值[1]

アンモニアの沸点	$T_{\rm b} = -33.3 \ {\rm ^{\circ}C}$
アンモニアの液化エンタルピー	$\Delta H_{\rm liq}(T_{\rm b}) = -23.33 \text{ kJ/mol}$
アンモニアの液化エントロピー	$\Delta S_{\text{liq}} (T_{\text{b}}) = -97 \text{ J/mol K}$

表3より、MgCl₂の NH₃との反応エントロピー ΔS に関して複数の文献で値に大きな差 異が見られた。Aoki らの報告によると MgCl₂ (1-0 NH₃): -97 J/mol K、(6-0 NH₃): -149 J/mol K であったのに対し、Neveu らの報告によると MgCl₂ (6-2 NH₃): -230.63 J/mol K、 (2-1 NH₃): -230.30 J/mol K、(1-0 NH₃): -230.88 J/mol K であり、その差は81~133 J/mol K となる。Aoki らは MgCl₂のアンモニア吸蔵は動力学的な影響を大きく受けるためそれ らの影響を考慮して算出したエントロピー値であり、Neveu らの報告する値と大きく異な るのはこれらを考慮に入れたことが理由だと推察されると報告している。 図 1 ^[25]には SrCl₂のアンミン錯体 SrCl₂ (NH₃:2-1)、SrCl₂ (NH₃:8-2)の van't Hoff プロットを示す。図 1 の van't Hoff プロットから求めた SrCl₂アンミン錯体の反応エンタルピー ΔH (kJ/mol)、反応エントロピー ΔS (J/mol K)を以下に示す。

SrCl₂ (NH₃:2-1) ΔH : -59 kJ/mol, ΔS :-174 J/molK

SrCl₂ (NH₃:8-2) ΔH : -43 kJ/mol, ΔS -140 J/molK

これらの ΔS の大きさは図 1 の中に記載されている ΔS に比べ 96 J/molK のずれが生じている。図 2^[29]には MgCl₂-NH₃ システムの van't Hoff プロットを示す。ここで、図 2 は

MgCl₂ (NH₃:1-0) ΔH : -87.0 kJ/mol, ΔS :-230.88 J/molK

MgCl₂ (NH₃:2-1) ΔH : -74.9 kJ/mol, ΔS -230.3 J/molK

MgCl₂ (NH₃:6-2) ΔH : -55.6 kJ/mol, ΔS -230.63 J/molK

の値を用いてプロットしたと報告されている。しかしながら、図 2 の van't Hoff プロット から求めた MgCl₂のアンミン錯体の反応エンタルピー ΔH (kJ/mol)、反応エントロピー ΔS (J/mol K)は以下のようになる。

 $MgCl_2 (NH_3:1-0) \quad \Delta H: -87 \text{ kJ/mol}, \quad \Delta S:-135 \text{ J/molK}$

MgCl₂ (NH₃:2-1) ΔH : -75 kJ/mol, ΔS :-134 J/molK

MgCl₂ (NH₃:6-2) ΔH : -56 kJ/mol、 ΔS :-135 J/molK

これらの ΔS の大きさは Elmøe らの論文に記載されている ΔS に比べ, やはり 96 J/molK の ずれが生じている。

以上の差異について考察したい。アンモニア吸蔵材料の ΔH と ΔS は以下の van't Hoff 式 に基づき求められる。

$\ln(P/10^5) = \Delta H/RT - \Delta S/R \tag{1}$

ここで、R は気体定数(8.314 J/molK)、*T* は絶対温度(K)、*P* は圧力(Pa)である。また、 *P*10⁵の単位は atm となる。(1)式を変形して、

 $\ln P = \Delta H/RT - (\Delta S + 95.7)/R \tag{2}$

圧力(P)の単位を Pa で解析すると ΔS が 95.7 J/molK ずれることが(2)式から予測される。 Neveu ら、Lysgaard ら、Elmøe らは圧力(P)の単位を Pa として ΔS を求め,圧力の基 準を取り間違えた可能性が考えられる。

3-1-3. まとめ

アンモニア合成反応においては、反応後の高圧ガスを冷却してアンモニアを液化分離(冷却分離)している。アンモニア吸蔵材料を用いた濃縮分離では生成熱の大きさが45kJ/mol以下の場合、通常の冷却分離に比べ省エネになると考えられている。

表1,3から生成熱の大きさが45kJ/mol以下の材料は下記の通りであった。

イオン液体

[bmim][BF₄] 23.5 kJ/mol

	[EtOHmim][BF4]		28.8 kJ/mol
	[EtOHn	nim][DCA]	26.7 kJ/mol
	[MTEO	A][MeOSO ₃]	31.3 kJ/mol
塩化カルシウム	CaCl ₂	(8-4 NH ₃)	41.0 kJ/mol
		(4-2 NH ₃)	42.3 kJ/mol
		(8-2 NH ₃)	42 kJ/mol
臭化カルシウム	CaBr ₂	(8-6 NH ₃)	41.6 kJ/mol
		(6-2 NH ₃)	45.6 kJ/mol
カルシウムボロハイト	ドライド		
	Ca(BH ₄)2 (4-2 NH3)	34.9 kJ/mol
塩化ストロンチウム	SrCl ₂	(8-x NH ₃)	41.4 kJ/mol
		(8-2 NH ₃)	43.4 kJ/mol
		(8-1 NH ₃)	41.4 kJ/mol
臭化ストロンチウム	SrBr ₂	(1-0 NH ₃)	36.3 kJ/mol
塩化バリウム	BaCl ₂	(8-0 NH ₃)	37.7 kJ/mol
臭化バリウム	BaBr ₂	(2-1 NH ₃)	44.3 kJ/mol
ヨウ化バリウム	BaI_2	(10-9 NH ₃)	32.2 kJ/mol
		(9-8 NH ₃)	41.8 kJ/mol
塩化リチウム	LiCl	(5-4 NH ₃)	33.5 kJ/mol
		(4-3 NH ₃)	36.8 kJ/mol
		(3-2 NH ₃)	44.7 kJ/mol
		(4-0 NH ₃)	34 kJ/mol
臭化リチウム	LiBr	(6.5-5 NH ₃)	43.3 kJ/mol
		(5-4 NH ₃)	33.7 kJ/mol
		(4-3 NH ₃)	42.7 kJ/mol
ヨウ化リチウム	LiI	(7-5.5 NH ₃)	44.5 kJ/mol
		(5.5-5 NH ₃)	15.1 kJ/mol
		(5-4 NH ₃)	34.7 kJ/mol
		(3-2 NH ₃)	41.7 kJ/mol
リチウムボロハイドラ	イド L	iBH4	20.0 kJ/mol
ナトリウムボロハイト	ジライド	NaBH ₄ (2-0 NH ₃)	29 kJ/mol
臭化ナトリウム	NaBr	(5.75-5.25 NH ₃)	14.5 kJ/mol
ヨウ化ナトリウム	NaI	(4-0 NH ₃)	40 kJ/mol
ヨウ化ニッケル	NiI	(2-0 NH ₃)	22.5 kJ/mol
塩化白金	PtCl ₂	(5-x NH ₃)	43.1 kJ/mol
硫酸鉄		Fe ₂ (SO ₄) ₃ (12-x NH ₃)	45.6 kJ/mol

3-2. NaBH4のアンモニア吸蔵特性の評価

アンモニア吸蔵材料の文献調査を行った結果、生成熱 45 kJ/mol-NH₃以下の材料および アンモニア吸蔵圧の低い材料がいくつか挙げられた(3-1-3)。その中から NaBH₄(ΔH = -29 kJ/mol、20 °C でのアンモニア吸蔵プラトー圧 90 kPa^[27])に着目し、アンモニア吸 蔵特性の評価を行った。

3-2-1. 実験

メノウ乳鉢を用いて粒状の NaBH₄ (99.99%, Aldrich)を5分間粉砕し、100°C において1時間真空脱気処理を行った。高圧ガス吸着量測定装置 BELSORP-HP を用いて実験 温度 20, 30, 40, 50, 60, 70, 80, 90, 100°C においてアンモニア吸蔵実験を行った。また、 得られた平衡蒸気圧曲線の吸蔵プラトー圧の温度変化からアンモニア吸蔵時の生成熱を算 出した。

3-2-2. 結果·考察

図 3 に NaBH₄のアンモニア吸蔵 PCT (Pressure-Composition-Temperature) 曲線を示 す。また図 4-(a), (b), (c)に吸蔵プラトー圧付近の圧力-組成等温線の拡大図を示す。図 3 よ り、20, 30, 40, 50, 60, 70, 80 °C においてはそれぞれアンモニア吸蔵プラトー圧が得られ た。一方、90, 100 °C においては本実験での測定圧力範囲内でアンモニア吸蔵プラトー圧 が得られなかった。高圧ガス吸着量測定装置 BELSORP-HP へは液化アンモニアボンベか ら室温において気化したアンモニアガスを装置に供給しており、最大吸着圧は 750 kPa 程 度となるため、90, 100 ℃ における吸蔵プラトー圧は 750 kPa 以上になると考えられる。 また、図 4-(a), (b), (c)より 50 °C 以上の温度では、アンモニア吸蔵量 0~0.5 mol NH₃ / mol NaBH₄、0.5~2.0 mol NH₃ / mol NaBH₄の2段階の吸蔵プラトー圧が確認できた。各温 度での吸蔵プラトー圧を表 4 に示す。この際、2 段目(高圧)のプラトー圧力の方が,1 段目(低圧)よりも温度依存性が高く圧力増加が大きいため、温度上昇に伴ってプラトー 圧の差が広がることが分かった。また、それぞれの組成領域でのプラトー圧の温度変化を 元に van't Hoff plot を行い(図 5、図 6)アンモニア吸蔵反応の生成熱を算出した。アン モニア吸蔵量 0 ~ 0.5 mol NH₃ / mol NaBH₄の領域では ΔH = -26.8 kJ/mol、 ΔS = -90.7 J/mol K、 $0.5 \sim 2.0$ mol NH₃ / mol NaBH₄の領域では ΔH = -27.1 kJ/mol、 ΔS = -91.9 J/mol K であった。これらの ΔH と ΔS は報告された値(ΔH =-29kJ/mol, ΔS =-98J/molK)と同程 度となった。

3-2-3. まとめ

NaBH₄の NH₃吸蔵特性を評価した。50 °C 以上の温度では、アンモニア吸蔵量 0 ~ 0.5 mol NH₃ / mol NaBH₄、0.5 ~ 2.0 mol NH₃ / mol NaBH₄の 2 段階の吸蔵プラトー圧が認められた。アンモニア吸蔵量 0 ~ 0.5 mol NH₃ / mol NaBH₄の領域では、アンモニア吸蔵反応の生成熱 ΔH = -26.8 kJ/mol、 ΔS = -90.7 J/mol K、0.5 ~ 2.0 mol NH₃ / mol NaBH₄の領域では ΔH = -27.1 kJ/mol、 ΔS = -91.9 J/mol K であった。

3-3. アンモニア吸蔵/放出サイクルにおける NaBH4の安定性評価

上述した通り、NaBH4のNH3吸蔵反応のエンタルピー変化はおおよそ-27 kJ/molである ため、NaBH4は本年度マイルストーンに沿ったNH3吸蔵物質である。しかしながら、実際 NaBH4をNH3吸蔵材料として利用した場合、速やかにNH3放出させるためには加熱し、放 出平衡圧を上げることが必須であり、軽元素で構成される錯体水素化物であるNaBH4にお いては、分解反応等の副反応が懸念される。本項では以下の2点に着目し、NaBH4のNH3 吸蔵材料としての特性を評価した。

1. 熱安定性

2. NH₃吸放出時の特性,並びにサイクル特性

3-3-1. 実験

NaBH4 の熱安定性については、熱重量・示差熱・昇温脱離質量分析(TG-DTA-MS)を用いて、NaBH4をAr気流中で昇温させ、重量減少、熱収支、また放出ガスの分析を行うことで評価した。また、NH3吸放出時の特性及びサイクル特性は以下の方法で評価した。NH3 吸蔵時、及び放出時における気相分析を行うため、図7に示すガスサンプリングシステムを作製した。グローブボックス内においてサンプル部に秤量したNaBH4を約200 mg入れ、ヒーターで加熱しながらNH3の吸放出実験を行い、得られた気相をガスクロマトグラフ

(GC) によって定性・定量分析した。なおカラムには、アンモニアを除く水素・窒素・酸素等を分離可能な SHINCARBON を用いた。NH₃ 吸蔵実験は、真空、50 $^{\circ}$ の条件でシステム内(V2 バルブは閉)(図 7)を約 0.4 MPa の NH₃ で満たし、圧力が安定(吸蔵反応が終了)するまで、NH₃を追加導入しながら静置した(6時間以上)。そして V1 を閉じ、ライン部におけるガスを GC に打ち込み、H₂量を見積もった。NH₃ 放出実験は、Heater 温度を 120 $^{\circ}$ に設定し、Buffer 下部を液体窒素に浸し、V2 を開き静置した(20 min 以上)。 この時圧力はほぼ真空状態となった。V1 を閉じ、V2 を開き、液体窒素を取り外し、完全に室温になったことを確認(圧力が安定)してからガス分析を行った。上記吸放出実験において、NH₃ 吸放出を 10 サイクル行った。その後、固相試料を取り出し、粉末 X 線回折(XRD)にて相同定を行った。

3-3-2. 結果·考察

TG-DTA-MS で得られた NaBH₄の昇温プロファイルを図 8 に示す。400 °C 付近までサ ンプル重量に変化はなく、その後急激な吸熱反応と伴に水素の発生、並びに重量減少が確 認された。測定後の試料は大幅に減少し、粉末ではなくなっていたことより、融解による 分解反応が進行したと考えられる。

NH₃吸蔵/放出後の気相分析(GC) プロファイルを図 9 に示す。なお background と して、NH₃のみを容器に封入し、60 °C、12 h 放置後のガスを測定した。横軸は GC 測定 時間であり、1 min 過ぎに見られるピークは水素に帰属される。Background においては、 一切水素に起因するピークは見られないが、NaBH₄が存在することで明らかに水素が発生 していることがわかる。ここで、GC 強度より、吸蔵時の水素量が放出時より上回ってい る様に見られるが、この差異は GC に導入するサンプル量が異なるために生じているもの であり本質的な変化ではない。図 10、及び表 1 に、NH₃吸放出サイクルにおける、吸蔵時 に発生した水素量を示す。初回 NH₃吸蔵時においては、NaBH₄に対し約 1 %程の水素が 生成していると算出された。しかしながら、2 サイクル目からは、発生水素量は 0.1 %以下 に急激に減少していることが分かった。次に図 11、及び表 6 に、NH₃放出時に発生した水 素量を示す。初回 NH₃放出時では、NaBH₄に対し約 2 %程の水素が発生していると算出 されたが、2 サイクル目も 1 %と吸蔵時に比べ高いものの、発生水素量はサイクル回数を 重ねるごとに減少傾向であることが確認された。また、図 12 に示した NH₃吸放出 10 サ イクル後の固相 XRD 結果では、副生成物に由来する回折ピークは観測されず、NaBH₄に 帰属されるピークのみが観測された。水素発生源については、固相試料に変化が見られな いため判断がつかないが、NH₃吸放出サイクルを繰り返すことで発生量が劇的に減少する ことを加味すると、本質的な分解反応のようなものではなく、例えばサンプル管、及び配 管等に吸着した水分が、式(1) で示す NaBH₄と加水分解反応を起こし、水素が生じて いるような不純物の影響であるものと推測する。

$$NaBH_4 + 2H_2O \rightarrow NaBO_2 + H_2 \tag{1}$$

3-3-3. まとめ

NaBH₄のNH₃吸蔵/放出サイクル特性を評価した。吸蔵時にはNH₃約0.4 MPa, 50°C, 放出時には真空,120°Cの条件とし,吸放出を10サイクル行い,各反応ステップにおけ る気相分析,及び10サイクル後の固相分析を行った。NH₃吸蔵/放出時には水素の発生 を伴い,初回吸放出時にはNaBH₄に対し約1~2%相当の水素が確認された。しかしなが ら、サイクルを重ねるに伴い発生水素量は減少傾向にあり,吸蔵時では2サイクル以降, 放出時においては5サイクル以降に0.1%以下となった。水素生成量がサイクルに伴い顕 著に減少すること及び10サイクル後の固相試料は原料であるNaBH₄であったことから, この水素生成は、ガス中或いは反応容器内部表面に微量に存在する水等の不純物が関与す る副反応に起因するものであると考えられる。

3-4. LiBH₄-NaBH₄混合物のアンモニア吸蔵特性の評価

本研究の最終目標は 60 °C におけるアンモニア吸蔵プラトー圧が 300 kPa 以下のアンモ ニア吸蔵材料の開発であったため、NaBH₄ (20 °C でのアンモニア吸蔵プラトー圧 90 kPa 、 60 °C でのアンモニア吸蔵プラトー圧 354 kPa)のアンモニア吸蔵プラトー圧が低圧化す ることを期待し LiBH₄ (ΔH = -20 kJ/mol、20 °C でのアンモニア吸蔵プラトー圧<1 kPa^[27]) との複合化による特性制御を検討した。

3-4-1. 実験

乳鉢を用いて LiBH₄ (≥95.0%, Aldrich, 分子量 21.783 g/mol) と NaBH₄ (99.99 %,

Aldrich, 分子量 37.832 g/mol)を5分間粉砕し混合物を作製した。混合比は LiBH4: NaBH4 = 1:1 mol, 1:4 mol のものを作製した。また粒状の LiBH4 (≥95.0%, Aldrich) と NaBH4 (99.99%, Aldrich) もそれぞれメノウ乳鉢を用いて5分間粉砕し、アンモニア吸蔵特性の 比較のため同様の実験を行った。次に、高精度ガス/蒸気吸着量測定装置 BELSORP-max を用いて、LiBH4、NaBH4、LiBH4-NaBH4 (1:1 mol)、(1:4 mol) の 20 °C でのアンモニ ア吸蔵実験を行った。また、LiBH4-NaBH4 (1:1 mol) の-10, 0, 10 °C のアンモニア吸蔵 実験を行い、20 °C の結果と併せてプラトー圧の温度変化を元に van't Hoff plot を行いア ンモニア吸蔵反応の生成熱を算出した。さらに、高圧ガス吸着量測定装置 BELSORP-HP と手動タイプの圧力調整反応装置(容量法)を用いて本研究の目的温度である 60 °C での アンモニア吸蔵実験を行った。

3-4-2. 結果·考察

図13に粉砕したLiBH₄、NaBH₄およびLiBH₄-NaBH₄(1:1 mol)混合物のX線回折(XRD) 測定結果を示す。図13より、作製したLiBH₄-NaBH₄混合物からはLiBH₄とNaBH₄由来 の回折ピークのみが得られ、ダブルカチオンのボロハイドライド等は生成していないこと が分かった。図14にアンモニア吸蔵放出前後のX線回折測定結果を示す。図14より、ア ンモニア吸蔵放出後も吸蔵放出前と同様にLiBH₄とNaBH₄由来の回折ピークのみが得ら れた。

20 °C におけるアンモニア吸蔵 PCT (Pressure-Composition-Temperature) 曲線を図 15 に示す。LiBH₄-NaBH₄ (1:1 mol)では分子量を(21.783 + 37.832)/2 = 29.8075 g/mol と して吸蔵量を算出した。XRD の結果より、LiBH₄, NaBH₄以外の物質が形成されていない と仮定すると、LiBH₄ 0.5 mol + NaBH₄ 0.5 mol の PCT 曲線は LiBH₄ 由来の吸蔵量およ び NaBH₄ 由来の吸蔵量がそれぞれ単体の 1/2 の量になり、吸蔵プラトー圧もそれぞれ単体 の場合と同じ圧力になると考えられる。

本実験で作製した LiBH₄-NaBH₄ (1:1 mol)では、吸蔵量は LiBH₄ 由来、NaBH₄ 由来と もに仮定通りにそれぞれ単体の 1/2 の量になり、アンモニア吸蔵プラトー圧は LiBH₄ 由来 の場合単体・混合物によらずほぼ同じ圧力になった。しかし、NaBH₄ 由来の吸蔵プラトー 圧は NaBH₄ 単体の 92 kPa に対して混合物では 79 kPa と大きな差が見られた。また、こ のプラトー圧の低下は LiBH₄-NaBH₄(1:4 mol)の場合も同様に見られた。

次に、LiBH₄-NaBH₄ (1:1 mol) の-10, 0, 10, 20 °C のアンモニア吸蔵 PCT 曲線を図 16 に示す。先ほど NaBH₄ 由来と考えた 1.75 mol NH₃ / mol sample 以降のアンモニア吸蔵プラトー圧の温度変化を元に van't Hoff plot (図 17) を行いアンモニア吸蔵反応の生成熱を 算出した結果、 ΔH =-27.7 kJ/mol、 ΔS =-92.6 J/mol K となり、NaBH₄ 単独での生成熱(0 ~ 0.5 mol NH₃ / mol NaBH₄の領域では ΔH =-26.8 kJ/mol、 ΔS =-90.7 J/mol K、0.5 ~ 2.0 mol NH₃ / mol NaBH₄の領域では ΔH =-27.1 kJ/mol、 ΔS =-91.9 J/mol K) と大きな差は 見られなかった。実験上、この程度の数値の差異が本質的か否か議論することは難しいが、 PCT 曲線においてはプラトー圧力に明確な差異が認められているのは事実であることか ら,混合により NaBH4の NH3吸蔵プラトー圧力を制御できる可能性が示唆されたと言える。但し,詳細については,今後その他の分析を行い議論する必要がある。

最後に、LiBH₄、NaBH₄、LiBH₄-NaBH₄ (1:1 mol)の 60 °C でのアンモニア吸蔵 PCT 曲線を図 18 に示す。LiBH₄-NaBH₄ (1:1 mol) は手動タイプの圧力調整反応装置 (容量法) を用いて実験をおこなったため 200 kPa 以下のデータ点が少ないが、0 ~ 2.0 mol NH₃ / mol sample の領域において NaBH₄の吸蔵プラトー圧 (354 ~ 359 kPa)よりも低い圧力 に NH₃ 吸蔵平衡圧があることが分かった。

3-4-3. まとめ

LiBH₄-NaBH₄混合物の NH₃吸蔵特性を評価した。LiBH₄と NaBH₄に基づくプラトー 圧が観測された。アンモニア吸蔵プラトー圧は LiBH₄由来の場合単体・混合物によらずほ ぼ同じ値になった。しかし、NaBH₄由来の吸蔵プラトー圧は NaBH₄単体の 92 kPa に対 して混合物では 79 kPa と大きな差が見られた。LiBH₄-NaBH₄混合物において、NaBH₄ にアンモニアが吸蔵される際の生成熱 ΔH = -27.7 kJ/mol、 ΔS = -92.6 J/mol K となり、 NaBH₄単独での値と同程度であった。LiBH₄-NaBH₄ (1:1 mol) の 60 °C でのアンモニア 吸蔵圧力は 0~2.0 mol NH₃ / mol sample の領域において NaBH₄ の吸蔵プラトー圧 (354 ~ 359 kPa) よりも低下した。

3-5. まとめ

文献調査を基にデータベースを作製し,熱力学安定性を示す ΔH が45 kJ/mol以下になるような物質のスクリーニングを行った。その中で、本システムにおいて最適な熱力学を示す物質の一つである NaBH₄に注目し NH₃吸蔵/放出特性の詳細について研究を行った。 NH₃を用いた PCT 測定を詳細に行った結果、プラトー圧力が観測されるアンモニア吸蔵 量 2.0 mol NH₃ / mol NaBH₄の領域で ΔH は約-27 kJ/mol, ΔS は約-91 J/mol K であった。

NaBH₄の NH₃ 吸蔵/放出サイクル特性を調査した結果,サイクル試験開始後数回では,約 1~2 %相当の水素が確認された。しかしながら,サイクルに伴い発生水素量は減少し,吸蔵時では 2 サイクル以降,放出時においては 5 サイクル以降に 0.1 %以下となったことから,この水素放出は本質的なものではなく不純物由来のものであると考えられる。

NaBH₄の NH₃ 吸蔵プラトー圧力を制御するため,LiBH₄を複合化した試料 LiBH₄-NaBH₄(1:1及び1:4 mol)を作製し,その特性を調査した。結果として,吸蔵プラト ー圧は NaBH₄単体の 92 kPa から 79 kPa に低下することが分かった。この結果は,混合 により NaBH₄の NH₃吸蔵プラトー圧力を制御できる可能性が示唆されたと言える。但し, 詳細については,今後その他の分析を行い議論する必要がある。

3-6. 今後の課題

本研究で行ったデータベース作成,及び NH₃吸蔵/放出特性評価から,NaBH₄は比較的 有望な材料であることが明らかになった。加えて、LiBH₄の複合化により NaBH₄の NH₃ 吸蔵プラトー圧力を制御できる可能性が示唆された。しかしながら、この NaBH₄ と LiBH₄ の相互作用については理解できていない。そこで、今後はこの相互作用を解明し、プラト ー圧力低下のメカニズムを理解することを目的とした研究を行い、得られた知見を基により高性能な NH₃ 吸蔵材料の開発を目指す。

4. 外部発表実績

- (1) 論文発表
- <査読付き>
 - 0件
- <査読なし(総説等含む)> 0件
- (2) 学会、展示会等発表

<招待講演>

0件

- <口頭発表> 国内2件、海外0件
- 1. 小島由継、青木泰平、宮岡ひかる、宮岡裕樹、市川貴之、NaBH4を用いたアンモニア貯蔵、第35 回水素エネルギー協会大会(タワーホール船堀)、12月3日~4日(2015)
- 2. 小島由継、青木泰平、宮岡裕樹、市川貴之、ナトリウムボロハイドライドのアンモニ吸蔵特性、日本金属学会 2015 年秋期大会(九州大学、福岡) 9月 16 日~18 日(2015)
- <ポスター発表>

0件

- <展示会、ワークショップ、シンポジウム等> 0件
- (3) プレス発表0件
- (4)マスメディア等取材による公表0件
- 5. 特許出願実績 なし
- 6. 参考文献
- [1] CRC Handbook of Chemistry and Physics 92nd Edition, 2011-2012, W. M. Haynes,,
- [2] A. Yokozeki and M. B. Shiflett. Vapor-liquid equilibria of ammonia + ionic liquid mixtures, Applied Energy 84

(2007) 1258-1273.

- [3] A. Yokozeki and M. B. Shiflett. Ammonia solubilities in room-temperature ionic liquids, Industrial & Engineering Chemistry Research 46 (2007) 1605-1610.
- [4] A. Yokozeki and M. B. Shiflett. Gas solubilities in ionic liquids using a generic van der Waals equation of state, The Journal of Supercritical Fluids 55 (2010) 846-851.
- [5] G. Li, Q. Zhou, X. Zhang, LeiWang, S. Zhang and J. Li. Solubilities of ammonia in basic imidazolium ionic liquids, Fluid Phase Equilib. 297 (2010) 34-39.
- [6] J. Bedia, J. Palomar, M. Gonzalez-Miquel, F. Rodriguez and J. J. Rodriguez. Screening ionic liquids as suitable ammonia absorbents on the basis of thermodynamic and kinetic analysis, Sep. Purif. Technol. 95 (2012) 188-195.
- [7] J. Huang, A. Riisager, R. W. Berg and R. Fehrmann. Tuning ionic liquids for high gas solubility and reversible gas sorption, J. Mol. Catal. A: Chem. 279 (2008) 170-176.
- [8] J. Palomar, M. Gonzalez-Miquel, J. Bedia, F. Rodriguez and J. J. Rodriguez. Task-specific ionic liquids for efficient ammonia absorption, Sep. Purif. Technol. 82 (2011) 43-52.
- [9] P. J. Carvalho and J. A. P. Coutinho. Non-ideality of Solutions of NH3, SO2, and H2S in Ionic Liquids and the Prediction of Their Solubilities Using the Flory–Huggins Model, Energy & Fuels 24 (2010) 6662-6666.
- [10] W. Shi and E. J. Maginn. Molecular simulation of ammonia absorption in the ionic liquid
 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf₂N]), AlChE J. 55 (2009) 2414-2421.
- [11] C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt and O. M. Yaghi. Exceptional ammonia uptake by a covalent organic framework, Nat Chem 2 (2010) 235-238.
- [12] C. Y. Liu and K.-i. Aika. Ammonia Absorption on Alkaline Earth Halides as Ammonia Separation and Storage Procedure, Bull. Chem. Soc. Jpn. 77 (2004) 123-131.
- [13] C. Y. Liu and K.-i. Aika. Effect of the Cl/Br Molar Ratio of a CaCl2–CaBr2 Mixture Used as an Ammonia Storage Material, Industrial & Engineering Chemistry Research 43 (2004) 6994-7000.
- [14] C. Y. Liu and K.-i. Aika. Ammonia Absorption into Alkaline Earth Metal Halide Mixtures as an Ammonia Storage Material, Industrial & Engineering Chemistry Research 43 (2004) 7484-7491.
- [15] 角田大樹, 劉醇一 and 加藤之貴. 金属ハロゲン化物のアンモニア吸蔵・放出挙動, 化学工学会第46回 秋季大会 (2014)
- [16] E. A. Sullivan and S. Johnson. The Lithium Borohydride–Ammonia System P–C–T Relationships and Densities, The Journal of Physical Chemistry 63 (1959) 233-238.
- [17] E. Lepinasse and B. Spinner. Cold production through coupling of solid-gas reactors I: Performance analysis, Rev. Int. Froid 17 (1994) 309-322.
- [18] H. Chu, G. Wu, Z. Xiong, J. Guo, T. He and P. Chen. Structure and Hydrogen Storage Properties of Calcium Borohydride Diammoniate, Chem. Mater. 22 (2010) 6021-6028.
- [19] H. Reardon, J. M. Hanlon, M. Grant, I. Fullbrook and D. H. Gregory. Ammonia Uptake and Release in the MnX_2 – NH_3 (X = Cl, Br) Systems and Structure of the $Mn(NH_3)_nX_2$ (*n* = 6, 2) Ammines, Crystals 2 (2012) 193-212.
- [20] International Critical Tables of Numerical Data, Physics, Chemistry and Technology, McGraw-Hill, New York (1929), Vol. 7, pp. 224-313,
- [21] M. Kubota, K. Matsuo, R. Yamanouchi and H. Matsuda. Absorption and Desorption Characteristics of NH3 with

Metal Chlorides for Ammonia Storage, J. Chem. Eng. Jpn. 47 (2014) 542-548.

- [22] M. O. Jones, D. M. Royse, P. P. Edwards and W. I. F. David. The structure and desorption properties of the ammines of the group II halides, Chem. Phys. 427 (2013) 38-43.
- [23] P. Neveu and J. Castaing. Solid-gas chemical heat pumps: Field of application and performance of the internal heat of reaction recovery process, Heat Recovery Systems and CHP 13 (1993) 233-251.
- [24] R. Z. Sørensen, J. S. Hummelshøj, A. Klerke, J. B. Reves, T. Vegge, J. K. Nørskov and C. H. Christensen. Indirect, Reversible High-Density Hydrogen Storage in Compact Metal Ammine Salts, J. Am. Chem. Soc. 130 (2008) 8660-8668.
- [25] S. Lysgaard, A. L. Ammitzbøll, R. E. Johnsen, P. Norby, U. J. Quaade and T. Vegge. Resolving the stability and structure of strontium chloride amines from equilibrium pressures, XRD and DFT, Int. J. Hydrogen Energy 37 (2012) 18927-18936.
- [26] S. R. Johnson, W. I. F. David, D. M. Royse, M. Sommariva, C. Y. Tang, F. P. A. Fabbiani, M. O. Jones and P. P. Edwards. The Monoammoniate of Lithium Borohydride, Li(NH3)BH4: An Effective Ammonia Storage Compound, Chemistry An Asian Journal 4 (2009) 849-854.
- [27] T. Aoki, T. Ichikawa, H. Miyaoka and Y. Kojima. Thermodynamics on Ammonia Absorption of Metal Halides and Borohydrides, The Journal of Physical Chemistry C 118 (2014) 18412-18416.
- [28] Z. Huang, J. Gallucci, X. Chen, T. Yisgedu, H. K. Lingam, S. G. Shoreb and J.-C. Zhao. Li₂B₁₂H₁₂ 7NH₃: a new ammine complex for ammonia storage or indirect hydrogen storage, (2010)
- [29] T. D. Elmøe, R. Z. Sørensen, U. Quaade, C. H. Christensen, J. K. Nørskov and T. Johannessen. A high-density ammonia storage/delivery system based on Mg(NH3)6Cl2 for – in vehicles, Chem. Eng. Sci. 61 (2006) 2618-2625.

図表一覧

表1. イオン液体のアンモニア吸蔵特性^[2-10]

アンエーア四帯材料	正力	泪庐	吸ਛ量	۸IJ	٨C
(人士) 流仕) 购货		1皿/文	汉殿里		
	/MPa	70°	/Wt%	/KJ mol ¹	/J mol ⁻¹ K ⁻¹
[emim][BF ₄]	0.14	20	2.3		
	0.11	25	1.5		
	0.14	40	1.2		
	0.12	50	0.8		
	0.20	60	1.1		
[emim][Tf ₂ N]	0.15	25	0.9		
	0.17	49	0.7		
	0.14	26	0.9		
	0.17	50	0.4		
[emim][Ac]	0.47	25	13.0		
[emim][EtOSO ₃]	0.42	25	7.2		
[emim][SCN]	0.31	25	7.4		
[bmim][BF4]	0.10	20	3.3	-23.53	
	0.13	20	2.6		
	0.22	25	3.4		
	0.18	40	1.8		
	0.15	50	1.1		
	0.17	60	0.9		
	0.13	25	1.6		
	0.20	50	1.0		
[bmim][PF6]	0.17	25	3.1		
	0.27	51	2.4		
[hmim][BF ₄]	0.17	20	4.0		
	0.22	25	3.7		
	0.23	40	2.4		
	0.18	50	1.5		
	0.14	60	1.0		
[hmim][C1]	0.19	25	2.5		
	0.13	20	2.0		

	0.10	51	0.5		
$[omim][BF_4]$	0.13	20	4.2		
	0.12	25	2.3		
	0.18	40	2.3		
	0.10	50	1.1		
	0.12	60	0.9		
[EtOHmim][BF4]	0.10	20	11.9	-28.83	
	0.10	40	6.6		
[EtOHmim][DCA]	0.10	20	16.0	-26.73	
	0.10	40	6.7		
[TMGH][BF ₄]		20	8.3		
[TMGH][Tf ₂ N]		20	4.8		
[TMGHPO ₂][BF ₄]		20	3.6		
[MTEOA][MeOSO ₃]	0.10	20	17.9	-31.33	
	0.10	40	7.9		
[choline][NTf ₂]	0.10	20	7.9	-48.03	
	0.10	40	6.2		
[DMEA][Ac]	0.16	25	9.4		
	0.28	50	9.1		

表2. イオン液体の化学名および構造

イオン液体 略称	イオン液体 化学名	構造
$[emim][BF_4]$	1-ethyl-3-methylimidazolium	
	tetrafluoroborate	
$[emim][Tf_2N]$	1-ethyl-3-methylimidazolium	F_F
	bis(trifluoromethylsulfonyl)imide	
[emim][Ac]	1-ethyl-3-methylimidazolium	CH
	acetate	N O O
$[emim][EtOSO_3]$	1-ethyl-3-methylimidazolium	
	ethylsulfate	
		0
[emim][SCN]	1-ethyl-3-methylimidazolium	
	thiocyanate	

[bmim][BF4]	1-butyl-3-methylimidazolium tetrafluoroborate	N F-B-F
[bmim][PF6]	1-butyl-3-methylimidazolium hexafluorophosphate	
[hmim][BF4]	1-hexyl-3-methylimidazolium tetrafluoroborate	
[hmim][Cl]	1-hexyl-3-methylimidazolium chloride	
[omim][BF4]	1-octyl-3-methylimidazolium tetrafluoroborate	
[EtOHmim][BF ₄]	1-2(-hydroxyethyl)-3-methylimida zolium tetrafluoroborate	N OH F
[EtOHmim][DCA]	1-(2-hydroxyethyl)-3-methylimida zolium dicyanamide	N=C-N-C=N
[TMGH][BF4] [TMGH][Tf2N]		$ \begin{array}{c} & \\ & -N \\ & C = N \\ & H \end{array} \begin{array}{c} X^{*} & 1: [TMGH]BF_{4} (X = BF_{4}) \\ & -N \\ & H \end{array} \begin{array}{c} 2: [TMGH]Tf_{2}N (X = (CF_{3}SO_{2})_{2}N) \end{array} \end{array} $
[TMGHPO ₂][BF ₄]		
[MTEOA][MeOSO ₃]	tris(2-hydroxyethyl)methylammon ium methylsulfate	HO CH ₃ OH OH OH O-S-OCH ₃
[choline][NTf ₂]	choline bis(trifluoromethylsulfonyl)imide	
[DMEA][Ac]	N,N-dimethylethanolammonium acetate	H ₃ C \oplus OH O NH CH ₃ OH O CH ₃ \oplus O

表3. 固体材料のアンモニア吸蔵特性[11-28]

アンモニア吸蔵材料	圧力	温度	吸蔵量	ΔH	ΔS
	/kPa	/°C	/wt%	/kJ mol ⁻¹	$/J mol^{-1} K^{-1}$
TlCl (3-x NH ₃)				-56.0	
TlBr (3-0 NH ₃)				-89.1	
TlI (3-0 NH ₃)				-89.1	
Tl ₂ (SO ₄) ₃ (10-x NH ₃)				-55.6	
ZnCl ₂ (1-0 NH ₃)				-104.6	
ZnCl ₂ (2-1 NH ₃)				-80.3	
ZnCl ₂ (4-2 NH ₃)				-98.9	
ZnCl ₂ (6-4 NH ₃)					
ZnCl ₂ (10-6 NH ₃)				-118.3	
Zn(ClO ₃) ₂ (6-4 NH ₃)				-82.0	
Zn(ClO ₄) ₂ (6-4 NH ₃)				-92.0	
ZnBr ₂ (1-0 NH ₃)				-100.4	
ZnBr ₂ (2-1 NH ₃)				-83.2	
ZnBr ₂ (4-2 NH ₃)				-113.3	
ZnBr ₂ (6-4 NH ₃)				-92.2	
ZnI ₂ (1-0 NH ₃)				-92.0	
ZnI ₂ (2-1 NH ₃)				-81.2	
ZnI ₂ (4-2 NH ₃)				-128.6	
ZnI ₂ (6-4 NH ₃)				-91.4	
ZnSO ₃ (3-x NH ₃)				-57.7	
ZnS ₂ O ₃ (5-3 NH ₃)				-97.9	
ZnS ₂ O ₆ (5-x NH ₃)				-50.6	
ZnS ₄ O ₆ (5-3 NH ₃)				-97.9	
Zn(NO ₂) ₂ (1-x NH ₃)				-61.1	
Zn(NO ₃) ₂ (4-3 NH ₃)				-73.6	
Zn(NO ₃) ₂ (6-4 NH ₃)				-89.5	
ZnC ₂ O ₄ (5-2 NH ₃)				-128.0	
Zn(HCO ₂) ₂ (4-2.5 NH ₃)				-71.5	
Zn(CNS) ₂ (4-x NH ₃)				-53.5	
Zn(CNS) ₂ (6-4 NH ₃)				-79.5	
PtCl ₂ (5-x NH ₃)				-43.1	
PtI_2 (4-x NH ₃)				-67.3	
PtI ₂ (6-4 NH ₃)				-77.8	

PdCl ₂ (4-2 NH ₃)				-130.1	
PdI ₂ (4-2 NH ₃)				-107.7	
MnCl ₂ (6-2 NH ₃)			29.9	-189.5	
MnCl ₂ (2-1 NH ₃)			10.7	-71.0	
MnCl ₂ (1-0 NH ₃)			11.9	-84.1	
MnCl ₂ (6-2 NH ₃)			29.9	-47.4	
MnCl ₂ (2-1 NH ₃)			10.7	-71.0	
MnCl ₂ (1-0 NH ₃)			11.9	-84.2	
MnCl ₂ (6-2 NH ₃)				-47.3	-148.53
MnCl ₂ (2-1 NH ₃)				-71.1	-153.55
MnCl ₂ (1-0 NH ₃)				-84.1	-153.97
MnCl ₂ (Abs. 600 sec.)	84	30	44.1		
MnBr ₂ (6-2 NH ₃)				-212.1	
MnBr ₂ (2-1 NH ₃)				-77.0	
MnBr ₂ (1-0 NH ₃)				-83.8	
MnBr ₂ (6-2 NH ₃)				-53.1	-149.79
MnBr ₂ (2-1 NH ₃)				-77.0	-152.30
MnBr ₂ (1-0 NH ₃)				-83.7	-154.39
MnI ₂ (2-0 NH ₃)				-164.9	
MnI ₂ (6-2 NH ₃)				-237.0	
MnSO ₄ (6-2 NH ₃)				-205.6	
FeCl ₂ (1-0 NH ₃)				-86.8	
FeCl ₂ (2-1 NH ₃)					
FeCl ₂ (6-2 NH ₃)				-204.9	
FeBr ₂ (1-0 NH ₃)				-86.9	
FeBr ₂ (2-1 NH ₃)				-83.1	
FeBr ₂ (6-2 NH ₃)				-223.2	
FeBr ₃ (6-x NH ₃)				-46.8	
FeI ₂ (2-0 NH ₃)				-171.1	
FeI ₂ (6-2 NH ₃)				-242.6	
FeSO ₄ (6-4 NH ₃)				-114.2	
Fe ₂ (SO ₄) ₃ (12-x NH ₃)				-45.6	
CoCl ₂ (1-0 NH ₃)				-88.2	
CoCl ₂ (2-1 NH ₃)				-78.1	
CoCl ₂ (6-2 NH ₃)				-215.8	
CoCl ₂ (Abs. 108 min.)	50.67	50	41.5		
CoBr ₂ (1-0 NH ₃)				-87.8	

CoBr ₂ (2-1 NH ₃)				-84.4	
CoBr ₂ (Abs. 108 min.)	50.67	50	27.6		
CoI ₂ (2-0 NH ₃)				-166.4	
CoI ₂ (6-x NH ₃)				-61.5	
CoSO ₄ (4-x NH ₃)				-61.8	
CoSO ₄ (6-x NH ₃)				-58.5	
NiCl ₂ (6-2 NH ₃)			29.4	-236.7	
NiCl ₂ (2-1 NH ₃)			10.4	-79.5	
NiCl ₂ (1-0 NH ₃)			11.6	-89.7	
NiCl ₂ (6-2 NH ₃)			29.4	-59.2	
NiCl ₂ (2-1 NH ₃)			10.4	-79.5	
NiCl ₂ (1-0 NH ₃)			11.6	-89.8	
NiCl ₂ (Abs. 108 min.)	50.67	50	41.2		
NiCl ₂ (Abs. 600 sec.)	84	30	42.5		
Ni(ClO ₃) ₂ (6-x NH ₃)				-73.2	
NiBr ₂ (1-0 NH ₃)				-86.9	
NiBr ₂ (2-1 NH ₃)				-85.3	
NiBr ₂ (6-2 NH ₃)				-256.8	
NiBr ₂ (Abs. 108 min.)	50.67	50	31.4		
NiI ₂ (2-0 NH ₃)				-164.6	
NiI ₂ (6-2 NH ₃)				-266.6	
NiI ₂ (1-0 NH ₃)			5.2	-62	-92
NiI ₂ (6-0 NH ₃)			24.6	-58	-147
NiI ₂ (0-2 NH ₃)	40	29	9.8	-22.5	-67.1
NiSO ₄ (4-2 NH ₃)				-137.5	
NiSO ₄ (6-4 NH ₃)				-122.7	
NiS ₂ O ₃ (5-x NH ₃)				-62.7	
NiS ₂ O ₆ (6-x NH ₃)				-70.3	
NiS ₄ O ₆ (6-x NH ₃)				-61.5	
Ni(NO ₂) ₂ (5-4 NH ₃)				-57.7	
Ni(NO ₃)2 (6-x NH ₃)				-71.1	
Ni(H ₂ PO ₂) ₂ (6-x NH ₃)				-55.6	
Ni(HCO ₂) ₂ (4-x NH ₃)				-63.1	
Ni(HCO ₂) ₂ (6-4 NH ₃)				-90.3	
Ni(CNS) ₂ (6-2 NH ₃)				-90.3	
MgCl ₂ (1-0 NH ₃)			15.2	-87.0	
MgCl ₂ (2-1 NH ₃)			13.2	-74.9	

MgCl ₂ -6NH ₃ +MgCl ₂ -2NH ₃				-55.6	
MgCl ₂ (6-2 NH ₃)			34.5	-55.7	
MgCl ₂ (2-1 NH ₃)			13.2	-74.9	
MgCl ₂ (1-0 NH ₃)			15.2	-87	
MgCl ₂ (6-0 NH ₃)			51.8	-87	
MgCl ₂ (6-2 NH ₃)			34.5	-56	
MgCl ₂ (1-0 NH ₃)			15.2	-64	-97
MgCl ₂ (6-0 NH ₃)			51.8	-58	-149
MgCl ₂ (6-2 NH ₃)			34.5	-55.660	-230.63
MgCl ₂ (2-1 NH ₃)			13.2	-74.911	-230.30
MgCl ₂ (1-0 NH ₃)			15.2	-87.048	-230.88
MgCl ₂ (723)	80	25	48.3		
MgCl ₂ (523)	80	25	6.2		
MgCl ₂ (298)	80	25	38.4		
MgCl ₂	84	30	32.2		
MgCl ₂ (6-2 NH ₃)		98-117	32		
MgCl ₂ (2-1 NH ₃)		187-204	10		
MgCl ₂ (1-0 NH ₃)		250-274	9		
MgBr ₂ (1-0 NH ₃)				-90.7	
MgBr ₂ (2-1 NH ₃)				-84.1	
MgBr ₂ -6NH ₃ +MgBr ₂ -2NH ₃				-63.6	
MgBr ₂ (6-2 NH ₃)		130-155	23		
MgBr ₂ (2-1 NH ₃)		223-243	6		
MgBr ₂ (1-0 NH ₃)		270-292	9		
MgI ₂ (2-0 NH ₃)				-189.9	
$MgI_2\text{-}6NH_3\text{+}MgI_2\text{-}2NH_3$				-71.9	
MgI ₂ (6-2 NH ₃)		182-212	18		
Ca (6-0 NH ₃)				-258.9	
CaCl ₂ (8-4 NH ₃)			27.6	-163.9	
CaCl ₂ (4-2 NH ₃)			19.0	-84.5	
CaCl ₂ (2-1 NH ₃)			11.7	-63.1	
CaCl ₂ (1-0 NH ₃)			13.3	-69.0	
CaCl ₂ (8-4 NH ₃)			27.6	-41.013	-230.30
CaCl ₂ (4-2 NH ₃)			19.0	-42.268	-229.92
CaCl ₂ (2-1 NH ₃)			11.7	-63.193	-237.34
CaCl ₂ (1-0 NH ₃)			13.3	-69.052	-234.14
CaCl ₂ (8-4 NH ₃)			27.6	-41	

CaCl ₂ (4-2 NH ₃)			19.0	-42.3	
CaCl ₂ (2-1 NH ₃)			11.7	-63.2	
CaCl ₂ (1-0 NH ₃)			13.3	-69.1	
CaCl ₂ (8-0 NH ₃)			55.1	-69	
CaCl ₂ (8-2 NH ₃)			41.3	-42	
CaCl ₂ (Abs. 108 min.)	50.67	50	14.3		
CaCl ₂ (Abs. 600 sec.)	84	30	7.7		
CaCl ₂ (4-8 NH ₃)	50	20	27.6	-42.1	-138, 230
CaCl ₂ (2-4 NH ₃)	30	20	19.0	-41.7	-132, 230
CaBr ₂ (8-6 NH ₃)				-82.0	
CaBr ₂ (6-2 NH ₃)				-195.7	
CaBr ₂ (2-1 NH ₃)				-71.5	
CaBr ₂ (1-0 NH ₃)			7.9	-77.8	
CaBr ₂ (8-6 NH ₃)			10.1	-41.647	-232.72
CaBr ₂ (6-2 NH ₃)			22.6	-45.574	-221.09
CaBr ₂ (2-1 NH ₃)			7.3	-79.037	-253.82
CaBr ₂ (1-0 NH ₃)			7.9	-71.318	-226.22
CaBr ₂ (Abs. 108 min.)	50.67	50	32.0		
CaI ₂ (1-0 NH ₃)				-81.5	
CaI ₂ (2-1 NH ₃)				-79.5	
CaI ₂ (6-2 NH ₃)				-234.2	
CaI ₂ (8-6 NH ₃)				-71.9	
Ca(BH ₄) ₂ (4-2 NH ₃)		87		-34.9	
Ca(BH ₄) ₂ (2-1 NH ₃)		162		-48.0	
Ca(BH ₄) ₂ (1-0 NH ₃)		230		-52.7	
SrCl ₂ (1-0 NH ₃)			9.7	-48.1	
SrCl ₂ (8-x NH ₃)				-41.4	
SrCl ₂ (8-2NH ₃)			34.7	-43.4	235.6
SrCl ₂ (8-1 NH ₃)			40.4	-41.4	228.1
SrCl ₂ (8-0 NH ₃)			46.2		
SrCl ₂ (2-1 NH ₃)			8.8	-58.9	270.1
SrCl ₂ (2-0 NH ₃)			17.7		
SrCl ₂ (1-0 NH ₃)			9.7	-48.1	
SrCl ₂ (8-0 NH ₃)			46.2	-48	
SrCl ₂ (8-1 NH ₃)			40.4	-41	
SrCl ₂ (Abs. 108 min.)	50.67	50	0.2		
SrCl ₂ (8-1 NH ₃)			40.4	-41.431	-228.80

SrCl ₂ (1-0 NH ₃)			9.7	-15.316	-131.43
SrCl ₂ (723)	80	25	3.1		
SrCl ₂ (523)	80	25	10.4		
SrCl ₂ (298)	80	25	8.1		
SrCl ₂ (Abs. 600sec.)	84	30	23.5		
SrCl ₂ (2-8NH ₃)	70	32	34.7	-43.4	-124. 236
SrBr ₂ (8-2 NH ₃)				-273.5	
SrBr ₂ (2-1 NH ₃)				-53.5	
SrBr ₂ (1-0 NH ₃)				-70.3	
SrBr ₂ (Abs. 108 min.)	50.67	50	6.9		
SrBr ₂ (8-2 NH ₃)			26.6	-54.714	-259.62
SrBr ₂ (2-1 NH ₃)			6.1	-88.706	-340.78
SrBr ₂ (1-0 NH ₃)			6.4	-36.259	-165.01
SrBr ₂ (723)	80	25	34.3		
SrBr ₂ (523)	80	25	33.1		
SrBr ₂ (298)	80	25	29.4		
SrI ₂ (1-0 NH ₃)				-76.5	
SrI ₂ (2-1 NH ₃)				-64.8	
SrI ₂ (6-2 NH ₃)				-210.8	
SrI ₂ (8-6 NH ₃)				-92.0	
CaCl ₂ (0-1 NH ₃)				-69.052	-234.14
CaCl ₂ (1-2 NH ₃)				-63.193	-237.34
CaCl ₂ (723)	80	25	31.9		
CaCl ₂ (523)	80	25	39.3		
CaCl ₂ (298)	80	25	28.3		
CaCl _{1.67} Br _{0.33} (0-1 NH ₃)				-69.430	-232.82
CaCl _{1.67} Br _{0.33} (1-2 NH ₃)				-65.834	-240.09
CaCl _{1.67} Br _{0.33} (723)	80	25	32.7		
CaCl _{1.67} Br _{0.33} (523)	80	25	42.4		
CaCl _{1.33} Br _{0.67} (0-1 NH ₃)				-69.807	-231.50
CaCl _{1.33} Br _{0.67} (1-2 NH3)				-68.474	-242.83
CaCl _{1.33} Br _{0.67} (723)	80	25	44.5		
CaCl _{1.33} Br _{0.67} (523)	80	25	48.0		
CaClBr (0-1 NH ₃)				-70.185	-230.18
CaClBr (1-2 NH ₃)				-71.115	-245.58
CaClBr(723)	80	25	44.3		
CaClBr(523)	80	25	44.5		

CaCl _{0.67} Br _{1.33} (0-1 NH ₃)				-70.563	-228.86
CaCl _{0.67} Br _{1.33} (1-2 NH ₃)				-73.756	-248.33
CaCl _{0.67} Br _{1.33} (723)	80	25	43.7		
CaCl _{0.67} Br _{1.33} (523)	80	25	43.9		
CaCl _{0.33} Br _{1.67} (0-1 NH ₃)				-70.940	-227.54
CaCl _{0.33} Br _{1.67} (1-2 NH ₃)				-76.397	-251.07
CaCl _{0.33} Br _{1.67} (723)	80	25	35.1		
$CaCl_{0.33}Br_{1.67}(523)$	80	25	37.4		
CaBr ₂ (0-1 NH ₃)				-71.318	-226.22
CaBr ₂ (1-2 NH ₃)				-79.037	-253.82
CaBr ₂ (723)	80	25	33.4		
CaBr ₂ (523)	80	25	32.4		
CaBr ₂ (298)	80	25	8.8		
MgCl ₂ -CaCl ₂ (723)	80	25	42.5		
MgCl ₂ -CaCl ₂ (523)	80	25	44.0		
$CaCl_2$ -SrCl ₂ (723)	80	25	5.5		
$CaCl_2$ -SrCl_2(523)	80	25	21.7		
CaCl ₂ -CaBr ₂ (723)	80	25	44.3		
CaCl ₂ -CaBr ₂ (523)	80	25	44.5		
SrCl ₂ -SrBr ₂ (723)	80	25	13.9		
SrCl ₂ -SrBr ₂ (523)	80	25	36.2		
Ba (6-0 NH ₃)				-242.1	
BaCl ₂ (8-0 NH ₃)				-301.1	
BaCl ₂ (8-0 NH ₃)			39.6	-37.665	-227.25
BaBr ₂ (1-0 NH ₃)				-49.3	
BaBr ₂ (2-1 NH ₃)			5.1	-44.3	
BaBr ₂ (4-2 NH ₃)				-85.3	
BaBr ₂ (8-4 NH ₃)				-167.3	
BaI ₂ (2-0 NH ₃)				-112.1	
BaI ₂ (4-2 NH ₃)				-94.5	
BaI ₂ (6-4 NH ₃)				-92.8	
BaI ₂ (8-6 NH ₃)				-89.5	
BaI ₂ (9-8 NH ₃)			3.1	-41.8	
BaI ₂ (10-9 NH ₃)			3.0	-32.2	
LiCl (2-1 NH ₃)				-48.1	
LiCl (3-2 NH ₃)			18.2	-44.7	
LiCl (4-3 NH ₃)			15.4	-36.8	

LiCl (4-0 NH ₃) (LiCl (5-4 NH ₃)			13.4	-33.5	
LiCl (Abs. 108 min.) 50.67 50 8.0 110 LiG (3-4 NH ₃)11011415.4 -34.0 -119 LiBr (1-0 NH ₃) -49.3 -49.3 LiBr (2-1 NH ₃) -49.3 -46.4 LiBr (3-2 NH ₃) 9.9 -33.7 LiBr (5-4 NH ₃) 9.9 -33.7 LiBr (5-5 NH ₃) -66.9 LiI (1-0 NH ₃) -66.9 LiI (2-1 NH ₃) -57.7 LiI (3-2 NH ₃) -48.5 LiI (2-1 NH ₃) -48.5 LiI (2-1 NH ₃) -66.9 LiI (2-1 NH ₃) -48.5 LiI (2-3 NH ₃) -48.5 LiI (5.5 NH ₃) -107 LiI (2-3 NH ₃) -107 LiB ₄ -107 LiB ₄ -107 LiB ₄ -107 LiB ₄ NaCl (5-0 NH ₃) -107 NaB ₄ (5.25-0 NH ₃) -163.1 NaB ₄ (5.25-0 NH ₃) -163.1 NaB ₄ (5.25-0 NH ₃)	LiCl (4-0 NH ₃)			61.6	-34	-119
LiCl $(3-4 \text{ NH}_3)$ 1101415.4 -34.0 -119 LiBr $(1-0 \text{ NH}_3)$ -56.9 LiBr $(2-1 \text{ NH}_3)$ -49.3 LiBr $(3-2 \text{ NH}_3)$ 44.4 LiBr $(4-3 \text{ NH}_3)$ 44.4 LiBr $(5-5 \text{ NH}_3)$ 9.9 -33.7 LiBr $(6.5-5 \text{ NH}_3)$ 11.0 -42.7 LiBr $(Abs. 108 \min.)$ 50.67 50 21.1 Lif $(1-0 \text{ NH}_3)$ -56.9 Lif $(2-1 \text{ NH}_3)$ -56.9 Lif $(3-2 \text{ NH}_3)$ -56.9 Lif $(3-2 \text{ NH}_3)$ -56.9 Lif $(3-2 \text{ NH}_3)$ -51.0 Lif $(3-3 \text{ NH}_3)$ -48.5 Lif $(3-5 \text{ NH}_3)$ -48.5 Lif $(2-3 \text{ NH}_3)$ -48.5 Lif $(2-3 \text{ NH}_3)$ -107 LiB4 -107 LiB4 -163.1 NaEr $(5.5-5.25 \text{ NH}_3)$ -163.1 NaBr $(5.75-5.25 \text{ NH}_3)$ -163.1 NaB4 $(2-0 \text{ NH}_3)$ -163.1 <td>LiCl (Abs. 108 min.)</td> <td>50.67</td> <td>50</td> <td>8.0</td> <td></td> <td></td>	LiCl (Abs. 108 min.)	50.67	50	8.0		
LiBr (1-0 NH3) Image: Section of the section of t	LiCl (3-4 NH ₃)	110	14	15.4	-34.0	-119
LiBr (2-1 NH3)III	LiBr (1-0 NH ₃)				-56.9	
LiBr $(3-2 \text{ NH}_3)$ Image: style	LiBr (2-1 NH ₃)				-49.3	
LiBr (4-3 NH3)I11.0-42.7LiBr (5-4 NH3)9.9-33.7LiBr (6.5-5 NH3)12.9-43.3LiBr (Abs. 108 min.)50.675021.1LiI (1-0 NH3)66.9LiI (2-1 NH3)51.0LiI (3-2 NH3)51.0LiI (4-3 NH3)48.5LiI (5-5 NH3)3.7-15.1LiI (5-5 NH3)3.7-15.1LiI (5-5 NH3)010.1LiI (5-5 NH3)66.9LiI (2-3 NH3)646.69.2-41.7-107LiBH42543.9Value-20.0Li2B12H12 (7-0 NH3)50R.T.A3R (5.25-0 NH3)163.1NaBr (5.25-0 NH3)185.5NaBr (5.75-5.25 NH3)14.5NaI (4-5 NH3)0-119.6NaI (4-5 NH3)119.6KI (4-0 NH3)902047.4NaBH4 (2-0 NH3)106NaI (4-5 NH3)106NaI (4-5 NH3)119.6KI (4-0 NH3)119.6KI (4-0 NH3)106NL (6-4 NH3)NH2COONH4NH2CONH4NH2CONH4NH2CONH4NH2CONH4NH2CONH4NH2CONH4NH2CONH4NH2CONH4-<	LiBr (3-2 NH ₃)				-46.4	
LiBr (5-4 NH ₃) 9.9 -33.7 LiBr (6.5-5 NH ₃) 50.67 50 21.1 LiBr (Abs. 108 min.) 50.67 50 21.1 Lil (1-0 NH ₃) -66.9 -51.0 Lil (2-1 NH ₃) -57.7 -51.0 Lil (3-2 NH ₃) -48.5 -48.5 Lil (5-4 NH ₃) 7.8 -34.7 Lil (5.5 S NH ₃) 3.7 -15.1 Lil (7-5.5 NH ₃) 10.1 -44.5 Lil (2-3 NH ₃) 6 46.6 9.2 Lil (2-3 NH ₃) 6 41.7 -107 LiBH4 25 43.9 -20.0 LizB1/2 (7-0 NH ₃) 6 R.7 43.4 NaCl (5-0 NH ₃) -14.5 -163.1 Nalf (5.75-5.25 NH ₃) -18 -165.5	LiBr (4-3 NH ₃)			11.0	-42.7	
LiBr (6.5-5 NH ₃) 12.9 -43.3 LiBr (Abs. 108 min.) 50.67 50 21.1 LiI (1-0 NH ₃) -66.9 -57.7 LiI (2-1 NH ₃) -51.0 -51.0 LiI (3-2 NH ₃) -48.5 -48.5 LiI (5-3 NH ₃) 7.8 -34.7 LiI (5-5 NH ₃) 3.7 -15.1 LiI (7-5.5 NH ₃) 10.1 -44.5 LiI (2-3 NH ₃) 6 46.6 9.2 Li2 (2-3 NH ₃) 6 46.6 9.2 -107 LiBH4 25 43.9 -20.0 -107 LiBH4 25 43.9 -20.0 -107 LiBH5 NaC1 (5-0 NH ₃) 50 R.T. 43.4 -107 NaBr (5.25-0 NH ₃) - 4.2 -163.1 -108 Nal (4.5-0 NH ₃) - 4.2 -14.5 NaI (4.5-0 NH ₃) - - -98 KBr (4-0 NH ₃) - - -119.6 KI (4-0 NH ₃) - -119.6 <td>LiBr (5-4 NH₃)</td> <td></td> <td></td> <td>9.9</td> <td>-33.7</td> <td></td>	LiBr (5-4 NH ₃)			9.9	-33.7	
LiBr (Abs. 108 min.)50.675021.1 $LiI (1-0 NH3)IIIIILiI (2-1 NH3)IIIIILiI (3-2 NH3)IIIIIIIILiI (3-3 NH3)IIIIIIIIIIILiI (5-5 NH3)IIIIIIIIIIIIILiI (7-5.5 NH3)IIIIIIIIIIIIIILiI (2-3 NH3)IIIIIIIIIIIIIIILiI (2-3 NH3)IIIIIIIIIIIIIIIIILiI (2-3 NH3)III$	LiBr (6.5-5 NH ₃)			12.9	-43.3	
Lil (1-0 NH3)III-66.9Lil (2-1 NH3)III-57.7Lil (3-2 NH3)IIILil (3-2 NH3)IIILil (5-4 NH3)IIILil (5-5 NH3)IIIILil (5-5 NH3)IIIIIIILil (2-3 NH3)IIIIIIILil (2-3 NH3)IIIIIIIILil (2-3 NH3)IIIIIIIIILil (2-3 NH3)II	LiBr (Abs. 108 min.)	50.67	50	21.1		
Lil (2-1 NH3)IIIILil (3-2 NH3)III-57.7Lil (3-2 NH3)II-48.5Lil (5-4 NH3)I7.8-34.7Lil (5-5 NH3)II10.1-44.5Lil (2-3 NH3)646.69.2-41.7-107LiBH42543.9-20.0ILi2 (2-0 NH3)50R.T.43.4INaCl (5-0 NH3)II-163.1INaBr (5.25-0 NH3)I10.1-44.5Nal (4.5-0 NH3)II10.1185.5NaBr (5.75-5.25 NH3)I10.1147.0Nal (4.5-0 NH3)II10.147.0Nal (4.5-0 NH3)II10.147.0Nal (4.5-0 NH3)II10.147.0Nal (4.5-0 NH3)II10.147.0Nal (4.5-0 NH3)II10.147.0Nal (4.5-0 NH3)IIIII III III III III III III III III II	LiI (1-0 NH ₃)				-66.9	
LiI ($3-2 \text{ NH}_3$)II-51.0LiI ($4-3 \text{ NH}_3$)I7.8 -34.7 LiI ($5-4 \text{ NH}_3$)7.8 -34.7 LiI ($5-5 \text{ NH}_3$)10.1 -44.5 LiI ($7-5.5 \text{ NH}_3$)6 46.6 9.2 LiI ($2-3 \text{ NH}_3$)6 46.6 9.2 -41.7 LiBH425 43.9 -20.0 Li2B12H12 ($7-0 \text{ NH}_3$)50R.T. 43.4 NaCl ($5-0 \text{ NH}_3$)50R.T. 43.4 NaEr ($5.25-0 \text{ NH}_3$)10 -163.1 NaBr ($5.25-0 \text{ NH}_3$)4.2 -14.5 NaI ($4.5-0 \text{ NH}_3$)10.1 -47.0 NaBr ($5.75-5.25 \text{ NH}_3$)10.1 -47.0 NaBH4 ($2-0 \text{ NH}_3$)9020 47.4 NaBH4 ($2-0 \text{ NH}_3$)9020 47.4 NaBH4 ($2-0 \text{ NH}_3$)10.1 -119.6 KI ($4-0 \text{ NH}_3$)1 -119.6 KI ($4-0 \text{ NH}_3$)1 -106 (NH2)2CO solid1 -106 (NH2)2CO solid1 -7.8 NH2COONH4 crystals1 -7.8 (NH4)2CO31 -109 (NH4)2CO31 -109 NH4HCO31 -190	LiI (2-1 NH ₃)				-57.7	
LiI (4-3 NH3)III-48.5LiI (5-4 NH3)7.8 -34.7 LiI (5.5-5 NH3)10.1 -44.5 LiI (2-3 NH3)646.69.2LiI (2-3 NH3)646.69.2LiI (2-3 NH3)646.69.2LiBH42543.9 -107 LiBH42543.9 -20.0 Li2B12H12 (7-0 NH3)50R.T.43.4NaCl (5-0 NH3)50R.T.43.4NaEr (5.25-0 NH3)10.1 -163.1 NaBr (5.25-0 NH3)4.2 -14.5 NaI (4.5-0 NH3)10.1 -47.0 NaI (6-4.5 NH3)9020 47.4 NaBH4 (2-0 NH3)9020 47.4 NaBH4 (2-0 NH3)10.1 -119.6 KI (4-0 NH3)10.1 -119.6 KI (4-0 NH3)10.1 -110.6 KI (4-0 NH3)10.1 -106 NH2COOsolid11NH2COONH41 -7.8 NH2COONH4 crystals1 -109 (NH4)2CO31 -109 NH4HCO31 -109	LiI (3-2 NH ₃)				-51.0	
LiI (5-4 NH3)LiI (5.5-5 NH3)10.1 </td <td>LiI (4-3 NH₃)</td> <td></td> <td></td> <td></td> <td>-48.5</td> <td></td>	LiI (4-3 NH ₃)				-48.5	
LiI (5.5-5 NH ₃)	LiI (5-4 NH ₃)			7.8	-34.7	
LiI (7-5.5 NH3)10.1 -44.5 LiI (2-3 NH3)646.69.2 -41.7 -107 LiBH42543.9 -20.0 Li2B12H12 (7-0 NH3)50R.T.43.4 -163.1 NaCI (5-0 NH3)0-163.1 -185.5 NaBr (5.25-0 NH3)4.2 -14.5 NaBr (5.75-5.25 NH3)4.2 -14.5 NaI (4.5-0 NH3)10.1 -47.0 NaBH4 (2-0 NH3)902047.4NaBH4 (2-0 NH3)909090Na (4-0 NH3)909090NH	LiI (5.5-5 NH ₃)			3.7	-15.1	
Lil (2-3 NH ₃) 6 46.6 9.2 -41.7 -107 LiBH ₄ 25 43.9 -20.0 Li ₂ B ₁₂ H ₁₂ (7-0 NH ₃) 50 R.T. 43.4 NaCl (5-0 NH ₃) 50 R.T. 43.4 NaBr (5.25-0 NH ₃) 10 -163.1 NaBr (5.75-5.25 NH ₃) 4.2 -14.5 NaI (4.5-0 NH ₃) 33.8 -176.9 NaI (64.5 NH ₃) 90 20 47.4 -29 -98 KBr (4-0 NH ₃) 90 20 47.4 -29 -98 KI (4-0 NH ₃) 90 20 47.4 -29 -98 KI (4-0 NH ₃) 90 20 47.4 -29 -98 KI (4-0 NH ₃) 90 20 47.4 -29 -98 KI (4-0 NH ₃) 90 20 47.4 -29 -98 KI (6-4 NH ₃) 90 20 47.4 -29 -98 (NH ₂) ₂ CO solid 10 100 -106 100	LiI (7-5.5 NH ₃)			10.1	-44.5	
LiBH4 25 43.9 -20.0 Li2B12H12 (7-0 NH3) 50 R.T. 43.4 NaCl (5-0 NH3) -163.1 -163.1 NaBr (5.25-0 NH3) -185.5 -185.5 NaBr (5.75-5.25 NH3) 4.2 -14.5 NaI (4.5-0 NH3) 33.8 -176.9 NaI (64.5 NH3) 10.1 -47.0 NaBH4 (2-0 NH3) 90 20 47.4 -29 -98 KBr (4-0 NH3) 90 20 47.4 -29 -98 KI (4-0 NH3) 90 20 47.4 -29 -98 KI (4-0 NH3) 90 20 47.4 -29 -98 KI (6-4 NH3) 1 -119.6 1 1 1 (NH2)2CO solid 1 1 -119.6 1 1 NH2COONH4 1 1 -106 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LiI (2-3 NH ₃)	6	46.6	9.2	-41.7	-107
Li2B12H12 (7-0 NH3) 50 R.T. 43.4 NaCl (5-0 NH3)	LiBH ₄		25	43.9	-20.0	
NaCl (5-0 NH ₃) -163.1 NaBr (5.25-0 NH ₃) -185.5 NaBr (5.75-5.25 NH ₃) 4.2 NaI (4.5-0 NH ₃) 33.8 NaI (6-4.5 NH ₃) 10.1 NaBH ₄ (2-0 NH ₃) 90 NaBH ₄ (2-0 NH ₃) 90 KBr (4-0 NH ₃) 90 KI (4-0 NH ₃) -119.6 KI (4-0 NH ₃) -128.0 KI (6-4 NH ₃) -106 (NH ₂) ₂ CO solid -106 NH ₂ COONH ₄ -78 NH ₂ COO ₃ -78 (NH ₄) ₂ CO ₃ crystals -109 NH ₄ HCO ₃ -109	Li ₂ B ₁₂ H ₁₂ (7-0 NH ₃)	50	R.T.	43.4		
NaBr (5.25-0 NH ₃)	NaCl (5-0 NH ₃)				-163.1	
NaBr (5.75-5.25 NH ₃) 4.2 -14.5 NaI (4.5-0 NH ₃) 33.8 -176.9 NaI (6-4.5 NH ₃) 10.1 -47.0 NaBH ₄ (2-0 NH ₃) 90 20 47.4 -29 -98 KBr (4-0 NH ₃) 90 20 47.4 -29 -98 KBr (4-0 NH ₃) 90 20 47.4 -29 -98 KI (4-0 NH ₃) 10.1 -119.6 -119.6 100<	NaBr (5.25-0 NH ₃)				-185.5	
NaI (4.5-0 NH ₃) 33.8 -176.9 NaI (6-4.5 NH ₃) 10.1 -47.0 NaBH ₄ (2-0 NH ₃) 90 20 47.4 -29 -98 KBr (4-0 NH ₃) 90 20 47.4 -29 -98 KI (4-0 NH ₃) 90 20 47.4 -29 -98 KI (4-0 NH ₃) 90 20 47.4 -29 -98 KI (4-0 NH ₃) 90 20 47.4 -29 -98 KI (6-4 NH ₃) 90 90 90 -119.6 -128.0 (NH ₂) ₂ CO solid 90 90 90 -106 -106 (NH ₂) ₂ CO granular 90	NaBr (5.75-5.25 NH ₃)			4.2	-14.5	
NaI (6-4.5 NH ₃) 10.1 -47.0 NaBH ₄ (2-0 NH ₃) 90 20 47.4 -29 -98 KBr (4-0 NH ₃) -119.6 -119.6 -119.6 KI (4-0 NH ₃) -128.0 -128.0 -61.5 KI (6-4 NH ₃) -61.5 -61.5 -106 (NH ₂) ₂ CO solid -106 -106 -106 NH ₂ COONH ₄ -108 -78 -109 (NH ₄) ₂ CO ₃ crystals -109 -109 -109 NH ₄ HCO ₃ -190 -190 -190	NaI (4.5-0 NH ₃)			33.8	-176.9	
NaBH4 (2-0 NH3) 90 20 47.4 -29 -98 KBr (4-0 NH3) -119.6 -119.6 -119.6 -128.0 -128.0 -128.0 -128.0 -106 <td>NaI (6-4.5 NH₃)</td> <td></td> <td></td> <td>10.1</td> <td>-47.0</td> <td></td>	NaI (6-4.5 NH ₃)			10.1	-47.0	
KBr (4-0 NH ₃) -119.6 KI (4-0 NH ₃) -128.0 KI (6-4 NH ₃) -61.5 (NH ₂) ₂ CO solid -106 (NH ₂) ₂ CO granular -106 NH ₂ COONH ₄ -78 NH ₂ COONH ₄ crystals -78 (NH ₄) ₂ CO ₃ crystals -109 NH ₄ HCO ₃ -190	NaBH ₄ (2-0 NH ₃)	90	20	47.4	-29	-98
KI (4-0 NH ₃) -128.0 KI (6-4 NH ₃) -61.5 (NH ₂) ₂ CO solid -106 (NH ₂) ₂ CO granular -106 NH ₂ COONH ₄ -78 NH ₂ COONH ₄ crystals -78 (NH ₄) ₂ CO ₃ crystals -109 NH ₄ HCO ₃ -109	KBr (4-0 NH ₃)				-119.6	
KI (6-4 NH ₃) -61.5 (NH ₂) ₂ CO solid -106 (NH ₂) ₂ CO granular -106 NH ₂ COONH ₄ -778 NH ₂ COONH ₄ crystals -778 (NH ₄) ₂ CO ₃ -109 (NH ₄) ₂ CO ₃ crystals -109 NH ₄ HCO ₃ -190	KI (4-0 NH ₃)				-128.0	
(NH2)2CO solid -106 (NH2)2CO granular -106 NH2COONH4 -106 NH2COONH4 crystals -78 (NH4)2CO3 -109 (NH4)2CO3 crystals -109 NH4HCO3 -190	KI (6-4 NH ₃)				-61.5	
(NH2)2CO granular -106 NH2COONH4 -78 NH2COONH4 crystals -78 (NH4)2CO3 -109 (NH4)2CO3 crystals -109 NH4HCO3 -190	(NH ₂) ₂ CO solid				-106	
NH2COONH4 -78 NH2COONH4 crystals -78 (NH4)2CO3 -109 (NH4)2CO3 crystals -109 NH4HCO3 -190	(NH ₂) ₂ CO granular				-106	
NH2COONH4 crystals -78 (NH4)2CO3 -109 (NH4)2CO3 crystals -109 NH4HCO3 -190	NH ₂ COONH ₄				-78	
(NH4)2CO3 -109 (NH4)2CO3 crystals -109 NH4HCO3 -190	NH ₂ COONH ₄ crystals				-78	
(NH ₄) ₂ CO ₃ crystals -109 NH ₄ HCO ₃ -190	(NH ₄) ₂ CO ₃				-109	
NH4HCO3 -190	(NH ₄) ₂ CO ₃ crystals				-109	
	NH ₄ HCO ₃				-190	

NH ₄ HCO ₃ crystals				-190	
COF-10	100	25	20.3		
Amberlyst 15	100	25	15.8		
Zeolite 13X	100	25	13.3		
MCM-41	100	25	11.9		

図1. SrCl₂アンミン錯体の van't Hoff プロット (S. Lysgaard et al., Int. J. Hydrogen Energy, 37, 18927-18936 (2012))

図 2. MgCl₂アンミン錯体の van't Hoff プロット (T. D. Elmøe et al., Chemical Engineering Science, 61, 2618-2625 (2006))

図 3. NaBH₄のアンモニア吸蔵 PCT (Pressure-Composition-Temperature) 曲線

図 4. NaBH₄のアンモニア吸蔵プラトー圧付近の圧力-組成拡大図 (a)-20, 30, 40 °C, (b)-50, 60 °C, (c)-70, 80 °C

	~	1.00211	T - / 1				
温度 /℃	20	30	40	50	60	70	80
吸蔵プラトー圧 /kPa	92	135	191	265 / 266	354 / 359	465 / 473	598 / 612

表 4. NaBH₄のアンモニア吸蔵プラトー圧

図 5. アンモニア吸蔵量 0~0.5 mol NH₃ / mol NaBH₄の van't Hoff plot

図 6. アンモニア吸蔵量 $0.5 \sim 2.0 \text{ mol NH}_3 / \text{mol NaBH}_4 \mathcal{O}$ van't Hoff plot

図 7. ガスサンプリングシステム

図 8. NaBH4のAr 気流中の昇温プロファイル

図 9. 初回 NH3 吸蔵/放出後の気相分析(GC)プロファイル

図 10. NH₃吸蔵時に発生した水素量

サイクル 回数	50℃NH₃吸蔵時 圧力(MPa)	水素割合 (H ₂ mol / NaBH ₄ mol *100)
1	0.414	0.87
2	0.433	0.09
3	0.395	0.06
4	0.415	0.04
5	0.411	0.03
6	0.402	0.03
7	0.399	0.03
8	0.406	0.03
9	0.436	0.02
10	0.396	0.02

表 5. NH3 吸蔵時に発生した水素量

サイクル 回数	水素割合 (H2 mol / NaBH4 mol *100)
1	1.94
2	0.99
3	0.13
4	0.19
5	0.07
6	0.04
7	0.04
8	0.04
9	0.02
10	0.01

表 6. NH3 放出時に発生した水素量

図 12. NH₃吸放出 10 サイクル後の固相 X 線回折

図 13. LiBH₄、NaBH₄、LiBH₄-NaBH₄(1:1 mol)混合物のX線回折

図 14. LiBH₄-NaBH₄ (1:1 mol) 混合物のアンモニア吸蔵放出前後の X 線回折

Amount of absorbed ammonia (mol / mol sample)

図 16. LiBH₄-NaBH₄ (1:1 mol) の-10, 0, 10, 20°Cのアンモニア吸蔵 PCT 曲線

 \boxtimes 17. LiBH₄-NaBH₄ (1:1 mol) \oslash van't Hoff plot

