2019/01/28 SIP 革新的燃焼技術公開シンポジウム

ディーゼル燃焼チーム クラスター大学(1) (グループ1) 広島大学 大学院工学研究科 西田 恵哉, 尾形 陽一, KIM Jaeheun, 各務 伸一

Diesel mixture formation characteristics of a multi-hole injector - A comparison with a single-hole injector

Research Objectives

- Investigate the mixture formation characteristics of a multi-hole injector under transient (small injection quantity) and quasi-steady condition (large injection quantity)
- Perform a comparison between single-hole injector and reveal the dominant control parameters for the differences in spray mixture formation.

Methodologies

Optical arrangement for LAS (Laser Absorption Scattering) techniques

✓ Experimental conditions

Injection quantity [mg/stroke/hole]	0.5, 2.5
Ambient density [kg/m3]	8.42
Ambient pressure [MPa]	2.00
Ambient temperature [K]	800
O2 concentration [%]	0

> Under same injection pressure

 $(p_{Rail,Single} = p_{Rail,Multi})$

Injection pressure [MPa]	100
--------------------------	-----

> Under same injection rate profile $(p_{Sac,Single} = p_{Sac,Multi})$

	p _{Rail} [MPa]	*Energ. dur [µs]	Inj. mass [mg]
Single-hole	30	170	0.53
Multi-hole	100	200	0.59

*Energizing duration is the duration of the signal.

Injector specification \checkmark

	Single- hole	Multi-hole
Nozzle diameter	0.123	0.123
Spray included angle	-	155

Conclusions

- Analysis on the mixture concentration distribution (equivalence ratio) from a multi-hole injector was possible by assuming as an axisymmetric spray.
- A comparison on the mixture formation was conducted between multi-hole and single-hole injectors under same injection pressure (rail pressure), or same injection rate condition. The mixture formation was superior for single-hole injector under same injection pressure (rail pressure), successine), successine (rail pressure), successine), successine (rail pressure), successine), successine