1/28 燃焼公開シンポジウム

産産学学連携で生まれた3次元燃焼解析 ソフトウェア『HINOCA(火神)』

平成31年1月28日(月) 14:50-15:20

東大安田講堂

草 鹿(早大) HINOCA WG 研究統括

溝 渕(JAXA)HINOCA WG 制御チーム代表

店 橋(東工大)HINOCA WGガソリンチーム代表

高 林(本田研)AICE 燃焼研究委員会 CAE•PM分科会長

本日の内容

- (1) HINOCA 研究開発全体説明 (草鹿)
- (2) HINOCA プラットフォーム (溝渕)
- (3) 産産学学連携による先端モデル開発事例(店橋)
- (4) HINOCAの将来 (高林)

1機構, 1研究所, 22大学がプログラミング, モデル化, 定式化, 実験を実施

プログラムの構造

サブモデル群

プラットフォ

点火モデル

火炎伝播モデル

壁熱伝達モデル

ノックモデル

PMモデル

All Japan の 開発体制

流動コア・プラットフォーム

IB(Immersed Boundary)法 圧縮性解法 Large Eddy Simulation Reynolds Averaged Navier-Stokes Sim. 航空宇宙分野で 培ってきた計算 科学技術を導入

高速化

MPI, OpenMP, GPU, Know-How

プログラムの開発

全体統括 草鹿

修正

先端モデル 店橋 リーダ-

基本モデル 溝渕リーダー

実現象を捉える

基礎実験、数値実験、エンジン実験

モデル化

分子、原子の挙動を抽出

定式化

モデルを数式で表現

プログラミング

速くかつ誤差を少く

完成

1つのサブモデルの完成

他問題でテスト

各種エンジンでテスト

コア・他サブモデルとの干渉解消

コアモテ゛ル - 新サフ゛モテ゛ル 新サフ゛モテ゛ル - 他サフ゛モテ゛ル

実装

コア・プラットフォームに実装

HINOCA プラットフォーム

溝渕泰寛 HINOCA WG 制御チーム代表

宇宙航空研究開発機構

内容

- プラットフォーム開発方針・体制
- プラットフォームの仕様、基本機能
- 効率化 高速化 利便性向上
 - 並列計算効率化(ロードバランス平滑化)
 - 局所細分化(Adaptive Mesh Refinement)
 - ユーザーサポート GUI
- まとめ:HINOCA 現在の姿

エンジン燃焼解析ソフト HINOCA とは

- ・等間隔直交格子法 + Immersed Boundary法の併用により形状データ からメッシュ作成を経ずに直ちに燃焼計算が可能
- ・各種乱流モデル(LES,RANS)、壁関数、サブモデル搭載

- ・メッシュ作成なし
- ・リードタイム 0 で 解析開始

HINOCA 開発の狙い:期待される産学連携の成果

*2016/6/20 SIP革新的燃焼技術第2回公開シンポジウジウムより

課題(1):エンジン熱効率向上

改善方向

- ·高圧縮比化
- •希薄、希釈化
- ·熱伝達抑制
- •摩擦低減

燃焼の課題

- ・ノック抑制
- ·点火着火安定化
- •火炎伝播安定化
- •熱伝達機構解明

シミュレーション要件

・高精度サブモデル

課題(2):開発効率向上、人財育成

・うまく作る:産学が連携し、日本の英知を結集して

高精度なサブモデルを開発

・うまく使う:産産学学が共通のモノサシで議論

メッシュ作成作業からの解放

・しっかり育てる:ソフト開発/活用を通じ、筒内現象 を広く深く理解したエンジン技術者を育成 利用要件

オープンソースの

産学共通

プラットフォーム

制御チーム CAE・PMグループ

大阪大 点火モデル

•放電経路を考慮した、 超希薄、高流動、高 EGR対応点火モデル の組込

早稲田大 火炎伝播モデル

超希薄燃焼対 応火炎伝播モ デルの組込

海技研

噴霧モデル

•液滴の変形/分裂/合体、気相 セル内速度分布を考慮した離 散液滴モデルの組込

JAXA

プラットフォーム

- •実形状対応
- •圧縮性流動
- •移動境界
- •反応高速計算

の機能を有したコア 部分を構築

東北大

ノックモデル

・Livengood-Wu 積分を使った 自着火予測モデル組込

大分大・ 北大

PM生成モデル

液膜モデルおよび、 モーメント法を用いた スス生成モデル組込

広島大

壁面冷損モデル

・圧縮性、非定常性考慮モデルの 組込

リ 先端モデル

AICE(自動車用内燃機関研究組合):検証

従来の解析プラットフォームにおける課題と対策

従来ソフトの課題

原因

対策

膨大なメッシュ 作成コスト

物体適合格子 直交格子法

直交格子法 +

IB(Immersed Boundary) 法

チョーク現象、 衝撃波を捕えら れない

非圧縮性流体 方程式

完全な圧縮 性流体方程 式

サイクル間変動を再現できない

RANS(Reynolds Averaged NS)にも とづく時間平 均的解析

LES(Large Eddy Simulation)にも とづく空間 平均的解析

メッシュ作成の煩わしさから解放します

等間隔直交格子法+IB法

- 一般的なCFD
- メッシュは物体にはりついている
- ・物体境界(赤線)が動くと メッシュ全体を作り直し

火神 HINOCA

- メッシュは動かない
- 物体境界(赤線)を含む メッシュ(水色)の物理量 が適切に与えられる

航空宇宙分野で培ったシミュレーション技術 を結集してプラットフォーム開発

プラットフォームの仕様、基本機能

プログラムソース

- 仕様言語: FORTRAN90
- ・機能ごとにMODULE化
- サブモデルの組込みが容易

基本機能

- •形状データ(STL形式)から自動で計算条件設定
- Hybrid 並列計算(MPI + OpenMP)を自動設定

並列計算ロードインバランス解消が必要

計算領域を含まないブロックを削除 残ったブロック毎にCPUを割り当て並列計算

計算負荷大

- ブロック内のセル 数が多い
- 燃焼計算も実施

さぼっている

ビストンより も下のブロッ クでは演算を 行わない

計算負荷小

- ブロック内のセル数 が少ない
- 流動計算しかしない

並列計算ロードバランス平滑化機能

負荷分散、収集の通信コスト が発生するものの、サイクル 全体で数十%の速度向上

局所細分化機能

(BAMR: Block Adaptive Mesh Refinement)

バルブ付近、壁近傍で 局所的に高い空間解 像度が必要

並列計算のスケーラビリ ティーが高い、BAMRを導入

ピストン位置を自動追従

バルブ付近、ピストン近傍を AMR化したモータリング計算

ユーザーサポートGUI

まとめ: HINOCA 現在の姿

•プラットフォーム+サブモデル

乱流(流動)	壁モデル	壁面 冷損モ	噴霧モデル	デル 壁面液膜モ	点火モデル	火炎伝播モ	ルックモデ	PMモデル	:
--------	------	--------	-------	-------------	-------	-------	-------	-------	---

等間隔直交格子法+IB(Immersed Boundary)法

- 格子生成作業なしで圧縮性流体計算実行
- 自動並列計算(MPI+OpenMP)
- 高速反応計算

ブロックAMR (Adaptive Mesh Refinement)

- 領域分割されたブロックごとに局所細分化

並列計算ロードバランス平滑化

プラットフォーム

SIP「革新的燃焼技術」公開シンポジウム 産産学学連携で生まれた 3次元燃焼解析ソフトウェア『HINOCA(火神)』

2019年1月28日

産産学学連携による先端モデル開発事例 ~サイエンスからのチャレンジ~

 HINOCA WG ガソリンチーム代表

 店橋 護(東京工業大学工学院)

HINOCA開発体制~基礎・応用・開発研究の距離~

- Craft-Launder-Sugaモデル(1996)(須賀, 大阪府大)
- Abe-Kondoh-Naganoモデル(1994)(安倍, 九大)
- ▶ 普遍的微細構造(1997)(店橋, 東工大) → Coherent Structure SGSモデル(2005)(小林, 慶応大)
- FDSGSモデル(基本概念1994 → 定式化2006)(店橋,東工大)

流動(乱流現象)のモデリング

乱流現象に関する最先端の知見

- エンジン筒内の流動(乱 流)に関する新たな知見
- ・適切な乱流モデルの提 言・提案
- 適切な壁面近傍の取り 扱い

-世界最高のμPIV計測

・エンジン筒内の壁面近傍は層流でも十分発達した乱流でもない

(東工大, 東京農工大, 慶応大)

従来, 完全発達した乱流の仮定? → 脱却可能か

- サイクル変動と乱流変動の分離
- タンブル強化と乱流変動強度
- ・燃焼に寄与する乱流変動の抽出

- 乱流モデル(LES, RANS)の検証
- 乱流燃焼機構の解明
- 乱流燃焼モデル(LES, RANS)の開発・ 検証

(東工大,東京農工大,山口大,慶応大)

乱流熱伝達のモデリング

乱流熱伝達+α

·乱流熱伝達·制御に関する最先端の知見

- 適切な乱流熱伝達モ デルの提言・提案
- 適切な壁面近傍の取 り扱い
- 乱流伝熱制御

(名工大, 九大, 大阪府大, 東工大, 慶応 大, 東京農工大)

- 熱損失特性の解明(エンジン条件)
- 火炎と壁面の干渉による熱流束増大 機構の解明
- 計測との直接比較

-世界最高の流速・温度計測

 $t_{IVO} = -30 \text{ CAD}$

- 壁面近傍の流動特性 熱流速モデルの基礎
- 温度・濃度との同時計測
- 伝熱促進デバイス

(東工大, 東京農工大, 慶応大)

瞬時熱流東センサ・

多点熱流速センサー

- RCM やSIP 共用エンジ ンでの詳細計測
- PIVやPLIF等との同時 計測

(都市大,明治大,東大,東工大)

高精度熱伝達モデルと火炎-壁面干渉機構の解明

ガソリンチームと連携した開発・検証①

流動モデルと冷却損失モデルの高精度化(LES解析例) (大阪府大, 九大, 名工大, 東工大, 農工大, 慶應大, 広大, JAXA)

ガソリン燃焼チーム Super Lean Burn

ガソリンチームと連携した開発・検証②

冷却損失モデルの高精度化

(大阪府大, 九大, 名工大, 東工大, 農工大, 慶應大, 広大, JAXA)

LES解析の例

吸気 -2.5e+06 -2e+6 -1.5e+6 -1e+6 -500000 -1.4e+03

流動:ベースモデル

冷損:ベースモデル

流動:ベースモデル+壁面先端モデル

冷損:先端モデル

乱流運動等による壁面熱流束の詳細な 変動を再現可能

排気

乱流火炎伝播のモデリング

燃焼に寄与する乱流変動の抽出(東エ大,東京農工大,山口大,慶応大)

______ 乱流火炎伝播 ● 世界最高圧でのOH PLIF (東エ大, 慶応大)

国産乱流燃焼モデル

- LES用フラクタルダイナ ミックSGS燃焼モデル
- ・ LES用格子幅自己認識型フラクタルダイナミックSGS燃焼モデル
- 層流火炎サブモデル
- RANS用ハイブリッド燃 焼モデル

基礎燃焼特性の最先端

- 詳細化学反応機構の構築(広大)
- 層流燃焼速度(大阪府大,山口大,九大)
- バルク乱流燃焼速度(九大)

- HINOCA着火モデルの基礎
- HINOCA伝播モデルの検証

乱流燃焼の物理に基づいたモデル構築へ

着火・火炎伝播遷移のモデリング

火花点火の物理

• 放電現象の解明と放電経路モデリング

(東大)

• 流動が大きく影響を与えない条件での現象解明

STEP 4

SIP条件での着火機構

TRZ~BRZにおける着火・火炎伝播

(東工大,東大,岡山大,東北大)

エネルギー投入(持続的) → 乱流混合 → 着火 → 一部伝播か自着火? (未解明)

HINOCA点火モデル

STEP 1

既存モデルはキャッチアップ済(RANSベースの概念)(大阪大、岡山大)

- 層流燃焼速度に関する経 験式 (大阪府大, 山口大, 九大)
- バルク乱流燃焼速度に関 する経験式 (九大)

_____ 火花点火 STEP 3 一強乱流中での着火機構

着火核形成から火炎伝播まで 遷移過程(東大,日大,東エ大,東北大)

LESモデルへの拡張 ―――

STEP 2

- 放電~着火核形成までの過程での乱 流効果 (東大,日大,岡山大)
- 着火に影響を与える流動特性の解明 (先端計測) (東エ大, 山口大, 慶応大)

物理に基づいた点火モデル構築

SIPのその先へ

ガソリンチームと連携した開発・検証③

国産新モデル(FDSGS+膨張項モデル)を導入 (東工大, 徳島大, 九大, 早大, JAXA)

モデル定数の調整無く,実験の乱流 燃焼速度をほぼ定量的に再現

ガソリンチームと連携した開発・検証④

SIPエンジン(λ=1.7)での検証 (慶應大, 東工大, 徳島大, 早大, 阪大, JAXA)

Velocity

40

=20

CA: -60 deg.aTDC

sT/sL

-20

-16

-12

-8

筒内流動 [m/s]

筒内温度 [K]

2000 rpm, $\lambda = 1.7$

ガソリンチーム開発の先端燃焼モデルを用いて, SIPエンジンのリーン(λ=1.7)条件を正常に計算

まとめ

- HINOCA開発に重要となる基礎物理過程,特に乱流, 乱流伝熱,着火,火炎伝播現象の明確化とそれらの 解明
- ・HINOCA開発に対する基礎研究からのアプローチとして、現象解明、モデル構築、そしてHINOCA実装の一連のプロセスに対する共通認識の醸成
- 基礎・応用・開発研究の距離を短縮したHINOCA開発 体制の先進性

世界最先端3Dエンジン燃焼 シミュレーションコード

HINOCAの将来

自動車用內燃機関技術研究組合(AICE)

燃焼研究委員会 CAE·PM分科会長

(本田技術研究所 四輪R&Dセンター 第3技術開発室)

高林 徹

1.HINOCAの活用と発展 2.HINOCA精度検証会

1.HINOCAの活用と発展

2.HINOCA精度検証会

将来のエンジンの燃焼開発ワークフロー

シミュレーションによる検討範囲

燃焼の評価が必要な運転 領域が拡がっている

「速い流れ」が扱える計算が必要! 「変動」が扱える計算が必要!

AICE エンジン燃焼の計算手法の方向性

HINOCAは汎用性のある手法なので、より広範囲の運転条件に適 用でき、工学分野だけでなく科学分野にも適用可能!

HINOCAの発展性は無限大

汎用性の高い手法を採用したHINOCAを改良することで、多分野への応用が可能

従来の産学シミュレーション開発

サブモデルをばらばらのプラットフォームで開発してしまうと、最終的に合体できない

使えるソフトを開発するには、「プラットホームの共通化」が必要!

将来の連携開発のありたい姿

今後シミュレーションを発展 させていくためには・・・

共通プラットフォーム上 での共同研究が必要!

研究費用

産学

連携

学学連携と産学連携の研究が加速し、ソフトの進化や人材育成が進む

HINOCAの進化

HINOCAの進化

機能「追加」(できる項目が増える)

1.HINOCAの活用と発展

2.HINOCA精度検証会

AICE会議室

HINOCA精度検証会

計算結果の提示

HINOCA 精度検証会

HINOCAをエンジン開発に活用可能な レベルとするための、

- ・計算と計測の結果比較(精度検証)
- ・計算時間の確認

SIPポートの定常流計算の設定

AICE SIPポートの垂直方向の流速比較

AICE Accordポートの定常流の数値比較

計測と計算で絶対値の乖離はまだあるが、各リスト毎の優劣比較は可能である

AICE Accordポートの定常流の流速比較

SIP後のHINOCAの利用に関しては、 皆さんが使いやすい状態で使えるよう に、現在JAXAおよび大学とAICEの 間で交渉中です。

以上