1/28 燃焼公開シンポジウム

産産学学連携で生まれた3次元燃焼解析 ソフトウェア『HINOCA(火神)』

平成31年1月28日(月) 14:50-15:20

東大安田講堂

草 鹿(早大) HINOCA WG 研究統括 溝 渕(JAXA)HINOCA WG 制御チーム代表 店 橋(東工大)HINOCA WGガソリンチーム代表 高 林(本田研)AICE 燃焼研究委員会 CAE・PM分科会長

本日の内容

(1) HINOCA 研究開発全体説明 (草鹿)

(2) HINOCA プラットフォーム (溝渕)

(3) 産産学学連携による先端モデル開発事例(店橋)

(4) HINOCAの将来(高林)

1機構,1研究所,22大学がプログラミング,モデル化,定式化,実験を実施

MPI, OpenMP, GPU, Know-How

HINOCA プラットフォーム

溝渕泰寛 HINOCA WG 制御チーム代表 宇宙航空研究開発機構

- プラットフォーム開発方針・体制
- プラットフォームの仕様、基本機能
- 効率化•高速化•利便性向上
 - 並列計算効率化(ロードバランス平滑化)
 - 局所細分化(Adaptive Mesh Refinement)
 - ユーザーサポート GUI
- まとめ: HINOCA 現在の姿

エンジン燃焼解析ソフト HINOCA とは

 ・等間隔直交格子法 + Immersed Boundary法の併用により形状データ からメッシュ作成を経ずに直ちに燃焼計算が可能
 ・各種乱流モデル(LES,RANS)、壁関数、サブモデル搭載

HINOCA 開発の狙い:期待される産学連携の成果

*2016/6/20 SIP革新的燃焼技術第2回公開シンポジウジウムより

利用要件

オープンソースの

産学共通

プラットフォーム

課題(1):エンジン熱効率向上

課題(2):開発効率向上、人財育成

- ・うまく作る : 産学が連携し、日本の英知を結集して 高精度なサブモデルを開発
- ・うまく使う:産産学学が共通のモノサシで議論 メッシュ作成作業からの解放
- ・しっかり育てる:ソフト開発/活用を通じ、筒内現象 を広く深く理解したエンジン技術者を育成

開発体制

従来の解析プラットフォームにおける課題と対策

従来ソフトの課題		原因	対策	
膨大なメッシュ 作成コスト		物体適合格子	直交格子法 + IB(Immersed Boundary)法	
チョーク現象、 衝撃波を捕えら れない	Hypersonic	非圧縮性流体 方程式	完全な 圧縮 性流体方程 式	Shock wave
サイクル間変動 を再現できない	RANS	RANS(Reynolds Averaged NS)にも とづく時間平 均的解析	LES(Large Eddy Simulation)にも とづく空間 平均的解析	LES

メッシュ作成の煩わしさから解放します

等間隔直交格子法+IB法

航空宇宙分野で培ったシミュレーション技術 を結集してプラットフォーム開発

プラットフォームの仕様、基本機能

<u> プログラムソース</u>

- •仕様言語:FORTRAN90
- 機能ごとにMODULE化
- サブモデルの組込みが容易

基本機能

- ・形状データ(STL形式)から自動で計算条件設定
- •Hybrid 並列計算(MPI+OpenMP)を自動設定

並列計算ロードバランス平滑化機能

インバランス解消前

インバランス解消後

局所細分化機能

バルブ付近、壁近傍で

局所的に高い空間解

(BAMR: Block Adaptive Mesh Refinement)

ピストン位置を自動追従

並列計算のスケーラビリ ティーが高い、BAMRを導入

バルブ付近、ピストン近傍を AMR化したモータリング計算

ユーザーサポートGUI

			→ 計質 ()雷転) 冬州 7 も
HINOCA GUI Ver.0.4		- 🗆 X	「「「「「「「「「」」」「「「」」「「「」」」「「」」「「」」「「」」「「」
ファイル ヘルプ			
新規開く保存!	閉じる 視野適合 -Z +Z ·	-X +X -Y +Y CW ACW TS	・バルブ・ピストンを勈か
▼ SIP_MultiFlow	ŕ	SIP MultiFlow	「ハルノ」にハーノと刻ル
条件名			して記史碑詞
▶ 計算領域			して設た推認
AMR			
▶ 形状			
画面切り取り			●最早細分化しベルと そ
エンジン回転			
▶ 初期条件			るよりようことであり
UX9-F			()の直を(引)で指定
則达			
液体燃料			
噴霧			、 白 勈 的 に 知 ひ ル し べ
▶ 噴射			
100.000	~		
初期条件			▶ ルがてん―ブに亦化する
追加		7	ルルハム へに交化する
ヘルプ			
			- よっにその周りを細分化
領域宅テーノル			
初期条件番号	領域色	Welcome to HINOCA GUI Ver.0.4.	
✓ 1	#ff8080 -	open HINOCA Ver.3.0 parameters. SIP_MultiFlow	
2	📕 #80ff80 🗸	inflow : min (-102,806412 -46,193893 -115,000000) max (94,842941 37,500000 92,492386) (original scale	
3	= #8080ff -	number of vertices : 9042	
		number of triangles : 127	
		outflow : min (-102.806412,-46.193893,-115.000000) max (94.842941,37.500000,92.492386) (original sca	
		number of vertices : 9042 number of triangles : 100	
		number of mangles : 100	

まとめ: HINOCA 現在の姿

•プラットフォーム+サブモデル

等間隔直交格子法+IB(Immersed Boundary)法

- 格子生成作業なしで

 圧縮性流体計算実行
- 自動並列計算(MPI+OpenMP)
- 高速反応計算

プラット

7

才

ブロックAMR(Adaptive Mesh Refinement) - 領域分割されたブロックごとに局所細分化

並列計算ロードバランス平滑化

SIP「革新的燃焼技術」公開シンポジウム 産産学学連携で生まれた 3次元燃焼解析ソフトウェア『HINOCA(火神)』

2019年1月28日

産産学学連携による先端モデル開発事例 ~サイエンスからのチャレンジ~

HINOCA WG ガソリンチーム代表 店橋 護(東京工業大学工学院)

HINOCA開発体制~基礎·応用·開発研究の距離~

- - Craft-Launder-Sugaモデル(1996)(須賀,大阪府大)
 - > Abe-Kondoh-Naganoモデル(1994)(安倍,九大)
 - ▶ 普遍的微細構造(1997)(店橋,東工大) → Coherent Structure SGSモデル(2005)(小林,慶応大)
 - ▶ FDSGSモデル(基本概念1994 → 定式化2006)(店橋,東工大)
 - ・HINOCAの開発体制

HINOCA WG

e Lean Burn

流動(乱流現象)のモデリング

n Lean Burn

乱流熱伝達のモデリング

ガソリンチームと連携した開発・検証①

流動モデルと冷却損失モデルの高精度化(LES解析例) (大阪府大,九大,名工大,東工大,農工大,慶應大,広大, JAXA)

r Lean Burn

ガソリンチームと連携した開発・検証②

冷却損失モデルの高精度化 (大阪府大,九大,名工大,東工大,農工大,慶應大,広大,JAXA)

LES解析の例

流動:ベースモデル 冷損:ベースモデル 流動:ベースモデル+壁面先端モデル 冷損:先端モデル

HINOCA WG

乱流運動等による壁面熱流束の詳細な 変動を再現可能

乱流火炎伝播のモデリング

着火・火炎伝播遷移のモデリング

ガソリンチームと連携した開発・検証③

ガソリンチームと連携した開発・検証④

SIPエンジン(λ=1.7)での検証 (慶應大,東エ大,徳島大,早大,阪大,JAXA)

筒内流動 [m/s]

²⁰⁰⁰ rpm, λ=1.7

ガソリンチーム開発の先端燃焼モデルを用いて, SIPエンジンのリーン(λ=1.7)条件を正常に計算

筒内温度 [K]

まとめ

- HINOCA開発に重要となる基礎物理過程,特に乱流, 乱流伝熱,着火,火炎伝播現象の明確化とそれらの 解明
- ・HINOCA開発に対する基礎研究からのアプローチとして、現象解明、モデル構築、そしてHINOCA実装の一連のプロセスに対する共通認識の醸成
- 基礎・応用・開発研究の距離を短縮したHINOCA開発
 体制の先進性

HINOCA

HINOCAの将来

自動車用内燃機関技術研究組合(AICE) 燃焼研究委員会 CAE・PM分科会長 (本田技術研究所 四輪R&Dセンター 第3技術開発室)

1.HINOCAの活用と発展 2.HINOCA精度検証会

1.HINOCAの活用と発展 2.HINOCA精度検証会

ACE 将来のエンジンの燃焼開発ワークフロー

34

AICE シミュレーションによる検討範囲

ACCE エンジン燃焼の計算手法の方向性

HINOCAは汎用性のある手法なので、より広範囲の運転条件に適 用でき、工学分野だけでなく科学分野にも適用可能!

汎用性の高い手法を採用したHINOCAを改良することで、多分野への応用が可能

将来の連携開発のありたい姿

学学連携と産学連携の研究が加速し、ソフトの進化や人材育成が進む

HINOCAの進化

HINOCAの進化

機能「追加」(できる項目が増える)

1.HINOCAの活用と発展

42

AICE会議室

2.HINOCA精度検証会

ACE SIPポートの定常流計算の設定

AICE SIPポートの垂直方向の流速比較

	3mm	5mm	7mm	9mm	11mm
実測					
4 2017/7					視点方向
5 2017/9					計測位置: ^ッドガスト ケット面から Bore/2 の下方位 置
92018/5					

ACC ACCORd ポートの 定常流の 数値比較

計測と計算で絶対値の乖離はまだあるが、各リスト毎の優劣比較は可能である

12 13

0.5

З

バルブリフト[mm]

10 11

0.1

З

バルブリフト[mm]

13 14

AICE Accordポートの定常流の流速比較

AICE 今後のHINOCAの利用について

SIP後のHINOCAの利用に関しては、 皆さんが使いやすい状態で使えるよう に、現在JAXAおよび大学とAICEの 間で交渉中です。

以上