

2017/07/06 SIP「革新的燃焼技術」第3回公開シンポジウム

ガソリン燃焼チームクラスター大学17(ノック抑制班)

東北大学流体科学研究所 巽 遼太, 中村 寿, 手塚 卓也, 長谷川 進, 丸田 重

温度分布制御型マイクロフローリアクタを用いた低温酸化反応に関する研究

• 反応機構:

KUCRS mech. (373化学種, 1072素反応)^[5] LLNL mech. (654化学種, 2827素反応)^[6] MFL mech. (140化学種)^[7]

[1] K. Maruta et al., Proc. Combust. Inst., 30 (2005) 2429-2436. [2] S. Minaev et al., Combust. Theor. Model., 11 (2) (2007) 187-203. [3] A. Yamamoto et al., Proc. Combust. Inst., 33 (2011) 3259-3266. [4] R.J. Kee, et al., Sandia National Laboratories Report, (1985) No. SAND85-8240.

• 化学種計測結果をもとに反応モデルの検証

質量分析の環境構築 反応モデルの検証 EGR条件の検証	2016	2017	2018
	質量分析の環境構築	反応モデルの検証	EGR条件の検証

[5] A. Miyoshi, J. Phys. Chem. A, 115 (15) (2011) 3301–3325. [6] M. Mehl et al., Proc. Combust. Inst., 33 (1) (2011) 193–200. [7] Diesel nheptane chem MFL2015, Model Fuel Library, CHEMKIN-PRO v17.2. (2016).

2017/07/06 SIP「革新的燃焼技術」第3回公開シンポジウム

ガソリン燃焼チームクラスター大学17 (ノック抑制班) Institute of Fluid Science, Tohoku University P. Grajetzki, H. Nakamura, T. Tezuka, S. Hasegawa, K. Maruta The reactivity of ultra-lean gasoline surrogate/air weak flames in a micro flow reactor with a controlled temperature

1 Objective

Background

- New automotive engines are developed to <u>increase efficiency and decrease CO₂</u>
- <u>Ultra-lean combustion of gasoline</u> can lead to higher efficiency

2 Principle

Micro flow reactor with a controlled temperature profile^{[1][2]}

Fuel/air

- Steady *T*-profile
- Laminar flow Constant pressure Flame pattern dependent on flow velocity Weak flame represents ignition

- Engine knocking can occur and must be avoided \bullet
 - → Reactivity of ultra-lean mixtures must be well understood

Challenges

- Ultra-lean combustion usually limited to high temperature/pressure regimes
- Common approaches use transient methods (RCM, Shock tube)

Solution

- Investigation by **micro flow reactor with controlled temperature profile** (MFR)
- Allows for investigation at atmospheric and elevated pressures and temperatures
- Enables steady state investigation
- Easy and reliable method to evaluate fuel reactivity

Weak flames

- Spatially separated flames
- Cool, blue and hot flames
- can be identified
- Reactivity can be evaluated
- Ultra-lean combustion possible

3 Results

4 Outlook

2016	2017
PRF experiments and simulations Comparison of reaction mechanisms	 Surrogate experiments and simulations Identification of main reactions

2018

- High pressure EGR conditions
 - Compilation into reactivity index

High pressure

- Experiments and simulations under engine conditions
- Effect of equivalence ration under these conditions
- **Exhaust gas recirculation** • EGR up to 20%
- Effect of third bodies on reactivity

References

[1] K. Maruta, T. Kataoka, N. Kim, S. Minaev, R. Fursenko, Proc. Combust. Inst., 30 (2005), 2429-2436. [2] S. Minaev, K. Maruta, R. Fursenko, *Combustion Theory and Modelling*, Vol. 11 No. 2 (2007), 187-203. [3] M. Hori, A. Yamamoto, H. Nakamura, T. Tezuka, S. Hasegawa, K. Maruta, Combust. Flame, 159 (2012), 959-967. [4] R.J. Kee, et al., Sandia National Laboratories Report (1985), No. SAND85-8240.

[5] A. Miyoshi, J. Phys. Chem. A., 115 (2011), 3301-3325.

