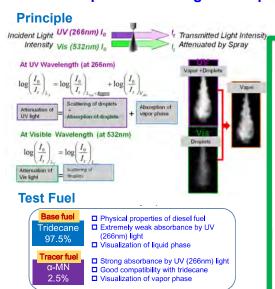
ディーゼル燃焼チーム クラスター大学(1)(グループ1)

広島大学 大学院工学研究科 西田 恵哉, 尾形 陽一, 冷 先銀

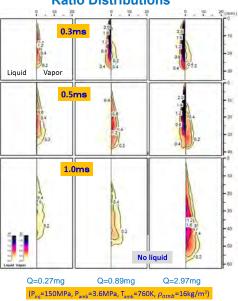

Quantitative Measurements of Spray Development and Mixture Formation

Objectives

- Measure the liquid/vapor mass distributions of diesel spray
- Correlate mixture formation with nozzle internal flow behaviors
- Provide mixture formation data for the validation of CFD models

Experimental Method

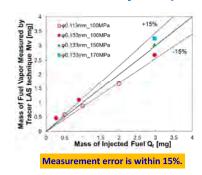
Laser Absorption Scattering Technique



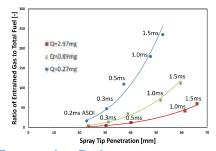
Results

Free Spray

Effects of Injection quantity


Liquid/Vapor Phase Equivalence Ratio Distributions

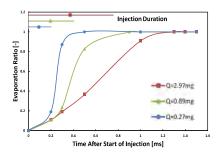
Optical System and Spray Test Rig



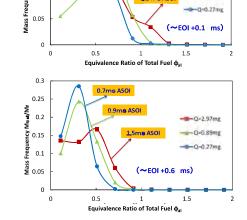
Measurement Accuracy of Vapor Mass

-- O=2.97mu

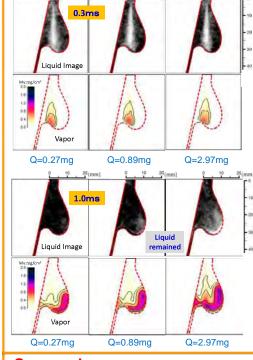
Ratio of Entrained Gas to Total Fuel



Evaporation Ratio


0.2

0.15


0.1

Probably Density Function of $M_{f \oplus all}/M_f$

2-D Cavity Impinging Spray Effects of Injection quantity Liquid/Vapor Mass Distributions in 2-D Cavity

Summaries

- •With a decrease in injection quantity
 - ✓ Air entrainment enhanced
 - \checkmark Higher mass frequency at lower Φ
- Evaporation suppressed in 2-D cavity

Future Work

- Tracer LAS experiment under the SIP standard conditions
- Correlate the tracer LAS experimental results with
 - √Flow behaviors inside a nozzle hole (Tottori University, AIST)
 - √ Nearfield spray data (Nagasaki University)