Supported Au nanoparticles as Heterogeneous Catalyst for Organic Reactions

Hermenegildo García and Avelino Corma Instituto de Tecnología Química, Technical University of Valencia Spain

Outline:

Au NPs and Nanoscience Au NPs as catalyst For aerobic oxidations For carbamoylation For tandem reactions Role of impurities Isolation of Au intermediates Conclusions and Acknowledgements

Catalytic activity of noble metals

- 58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	\mathbf{Pm}	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	- 99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	\mathbf{Fm}	Md	No	Lr

As the only exception in noble metals up to the 80s Au was catalytically inactive

Gold nanoparticles as catalyst

Low temperature, selective CO combustion: the smaller the particle size, the higher the activity

M Haruta, N Yamada, T Kobayashi, S Iijima: J. Cat. 115 (1989) 301-09.

Au NPs

- They can be easily obtained.
- "Bare" small Au NPs (1-2 nm) tend to grow
- The key issue is to stabilize small Au NPs
- "Stabilized" nanoparticles are surrounded by a ligand shell or supported on a solid
- Typically, for bulk materials, surface atoms form a negligible part of the total number of atoms

Stabilizing Gold Nanoparticles

Supporting on a solid: Deposition-Precipitation method

Au NPs supported on nanoparticulated ceria

CeO₂ nanoparticles •Increasing Ce^{III} population •Creation of oxygen vacancies •From insulator to semiconductor

Interplanar distance of Au

Particle size distribution

Diameter (nm)

Solventless, aerobic (1 atm) oxidation of alcohols by Au/CeO₂

	Calestante	Time Conversion ^[a]		Due due et	Salaativity[0/]	
	Substrate	[h]	[%]	Product	Selectivity[%]	
1^{b}	3-octanol	2.5	97	3-octanone	96	
2 ^b	sec-phenylethanol	2.5	92	acetophenone	97	
3 ^b	2,6-dimethylcyclohexanol	2.5	78	2,6-dimethylcyclohexanone	94	
4 ^b	1-octen-3-ol	3.5	80	1-octen-3-ona	>99	
5 ^b	cinnamylalcohol	7	66	cinnamaldehyde	73	
6 ^b	3,4-dimethoxybenzyl alcohol	7	73	3,4-dimethoxybenzaldehyde	83	
7 ^b	3-phenyl-1-propanol	6	70 3	3-phenylpropyl- 3-phenylpropa	noate 98	
8 ^c	vanillin alcohol	2	96	vanillin	98	
9° 2	2-hydroxybenzyl alcohol	2	>99	2-hydroxybenzaldehyde	87	
10 ^c	3,4-dimethoxybenzyl alcohol	2	>99	3,4-dimethoxybenzylic acid	>99	
11 ^c	cinnamyl alcohol	3	>99	cinnamylic acid	98	
12 ^d	n-hexanol	10	>99	hexanoic acid	>99	
13 ^e	n-hexanol	10	>99	hexanoic acid	>99	
14 ^c	sec-phenylethanol	5	>99	acetophenone	51	

Solventless aerobic alcohol oxidation and the green chemistry principles

- **1.** Avoid wastes (minimise E factor).
- 2. Use tolerable reagents and produce non-toxic products.
- **3. Use environmental friendly processes**
- 4. Use renewable feedstocks.
- **5.** Develop more active and selective catalysts.
- 6. Avoid derivatisation, protecting groups and isolations.
- 7. Maximise the atomic economy.
- 8. Use environmentally friendly solvents.
- 9. Minimise energy consumption
- 10. Use self- or bio- degradable products
- 11. Real time analyses
- 12. Minimise hazards

Replacement of toxic phosgene: Catalytic carbamoylation of aromatic diamines

• Problem: development of a catalyst

Carbamoylation of 2,4-diaminotoluene

Au NPs on other supports give rise to N-methylation products:

Tandem reaction

Two steps, **two processes**:

or two-steps one process:

Conversion = 95.2

Selectivity = 98.3

Role of Pd impurities in Au catalysis

High purity Au is also active for Sonogashira coupling

Pd is a very efficient catalystAu contains 5-10 ppm of Pd

• Has Au intrinsic activity?

Au complexes of a single atom is not able to promote SonogashiraAu NPs are active

Isolation of Au intermediates

Conclusions and Acknowledgements

Supported small sized Au NPs are highly active catalysts

Prof. Avelino Corma

Dr. Alberto Abad Dr. Raquel Juárez Dr. Abdessamad Grirrane

Financial Support:

•Japanish-Spanish Cooperative program