SYNTHESIS OF SUPER-NANOPOROUS CARBON ALLOY BY ELECTROOXIDATION OF A ZEOLITE TEMPLATED CARBON

E. Morallón, D. Cazorla-Amorós, Universidad de Alicante

R. Berenguer Universidad de Málaga

H. Nishihara, H. Itoi, T. Kyotani

Tohoku University

Strategic Japanese-Spanish Cooperative Program (FY2011)

"UNIQUE SUPER-POROUS CARBON ALLOYS FOR ASYMMETRIC HYBRID SUPERCAPACITORS"

Diego Cazorla-Amorós, Emilia Morallón Universidad de Alicante **Tomás Cordero, José Rodríguez** Universidad de Málaga UNIVERSIDAD Takashi Kyotani

Tohoku University

PRI-PIBJP-2011-0766

Project Title:

"Unique super-porous carbon alloys for asymmetric hybrid supercapacitors"

Objective:

The aim of this project is to synthesize unique porous carbon alloy and to develop a carbonbased asymmetric hybrid supercapacitor using the carbon alloy as a positive electrode.

Concept of Carbon Alloy:

Carbon materials can be developed with a wide range of structures, textures and properties. This led to **the Japanese Carbon Group** to propose in 1992:

"Carbon alloys are materials mainly composed of carbon atoms in multi-component systems, in which each component has physical and/or chemical interactions with each other. Here carbons with different hybrid orbitals account as different components"

(Carbon alloys, E Yasuda et al Editors, Elsevier, 2003, p.9).

Concept of Carbon Alloy:

Carbon materials can be developed with a wide range of structures, textures and properties. This lead to **the Japanese Carbon Group** to propose in 1992:

TO SYNTHESIZE A SUPER-NANOPOROUS CARBON ALLOY BASED ON ZEOLITE TEMPLATED CARBON (ZTC)

carbons with different hybrid orbitals account as different components"

(Carbon alloys, E Yasuda et al Editors, Elsevier, 2003, p.9).

What is ZTC? Nano-sized carbon material with taylored and ordered pore network prepared using zeolite as template

Nishihara et al. *Carbon*, 47 (2009) 1220.

Unique features ZTC

- 3D-nanographene network
- uniform nanopore size (1.2 nm)
- high surface area (up to 4000 m²/g)
- large amount of carbon edge sites!
- all edge sites and graphene surface are fully exposed!

These features are beneficial to use ZTC as an electrode for electrochemical capacitors

Unique features ZTC

These features are beneficial to the use ZTC as an electrode for electrochemical capacitors

- Adequate electrolyte accessibility
- High mass transfer rate
- High surface area (high double layer capacitance)
- Formation of large amount of functional groups (redox properties, pseudocapacitance)

Unique features ZTC

These features are beneficial to the use ZTC as an electrode for electrochemical capacitors

- Adequate electrolyte accessibility
- High mass transfer rate
- High surface area (high double layer capacitance)
- Formation of large amount of functional groups (redox properties, pseudocapacitance)

Hypothetical oxidation process of ZTC and the modelled molecular structure of fully-oxidized ZTC.

Hypothetical oxidation process of ZTC and the modelled molecular structure of fully-oxidized ZTC.

Main problems to achieve the objective

- -ZTC has a quite fragile structure
- -ZTC is very reactive
- -Easy structure degradation

Main problems to achieve the objective

- -ZTC has a quite fragile structure
- -ZTC is very reactive
- -Easy structure degradation

Main problems to achieve the objective

- -ZTC has a quite fragile structure
- -ZTC is very reactive
- -Easy structure degradation

Objective of this work:

To make a detailed study of the ZTC electrooxidation to get large concentration of surface oxygen groups and high surface area

Electrochemical oxidation:

-Galvanostatic oxidation: I= 2-50 mA, t= 1-15h, T= 25°C; Electrolytes: 1.0M NaOH, 1.0M H_2SO_4 , 2wt% NaCI

- Cyclic voltammetry: ΔE = -0.1-1.2 V, v= 1 mV/s, 1.0M H₂SO₄

Electrochemical oxidation:

-Galvanostatic oxidation: I= 2-50 mA, t= 1-15h, T= 25°C; Electrolytes: 1.0M NaOH, 1.0M H_2SO_4 , 2wt% NaCI

mass = 100 mg area = 2.25 cm^2 thickness = 2 m

thickness = 2 mm

3-electrode cell

WE: (Ti/RuO₂ + ZTC paste)

Chemical oxidation:

- Oxidation by HNO_3 at different temperatures (45°C, 80 °C) and times (from 15 min to 15h). Oxidation by H_2O_2 was also done.

Characterization

Structural-Textural

- N₂ adsorption (-196 °C)
- CO₂ adsorption (0 °C)
- X-ray diffraction (XRD)

Surface Chemistry

- Temperature-programmed desorption (TPD)
- X-ray photoelectron spectroscopy (XPS)

Results and discussion.

Results and discussion.

Chemical oxidation

Alicante University

	TPD					N ₂ adsorption		
Sample	CO µmol/g	CO ₂ µmol/g	O µmol/g	ΔO* µmol/g	$\frac{CO}{CO_2}$	$S_{\rm BET}$ (m ² /g)	$V_{\rm T}({\rm N}_2)$ (cm ³ /g)	%S _{BET}
ZTC	2644	286	3216	0	9.24	3650	1.63	100
ZTC N30-45-15min	4181	1506	7193	3977	2.78	2230	1.07	61
ZTC N30-80-15min	4327	1923	8173	4957	2.25	1870	0.88	51
ZTC N30-80-1h	4676	2555	9786	6570	1.83	1420	0.66	39
ZTC N30-80-2h	4708	2864	10436	7220	1.64	1140	0.52	31

SUMMARY ABOUT CHEMICAL OXIDATION:

-Chemical oxidation is a fast process that easily destroys the unique structure of ZTC.
-It produces a very important decrease in porosity and structural order.
-High selectivity to CO₂-type groups, since it

favours the oxidation of surface-oxidized sites.

Results and discussion.

Electrochemical oxidation

	TPD					N ₂ adsorption		
Sample	CO µmol/g	CO ₂ µmol/g	O µmol/g	ΔO^* $\mu mol/g$	$\frac{CO}{CO_2}$	$S_{\rm BET}$ (m ² /g)	$V_{\rm DR}(\rm N_2)$ $(\rm cm^3/g)$	%S _{BET}
ZTC	2644	286	3216	0	9.24	3650	1.54	100
ZTC 20Cl ⁻ 1h	4398	529	5456	2240	8.31	2780	1.21	76
ZTC 50Cl⁻ 1h	5083	709	6501	3285	7.17	2680	1.16	73
ZTC 5Cl- 15h	4669	1146	6961	3745	4.07	2430	1.01	67
ZTC 50Cl- 3h	5880	1760	9400	6184	3.34	1210	0.50	33
ZTC 50Cl- 10h	4849	4002	12853	9637	1.21	150	0.06	4
ZTC 50H ⁺ 1h	3442	435	4312	1096	7.91	3100	1.31	85
ZTC 5H ⁺ 15h	6095	1090	8275	5059	5.59	2290	0.89	63
ZTC 2H ⁺ 36 h (1.2V)	7159	1966	11091	7875	3.64	1863	0.77	51

	TPD					N ₂ adsorption		
Sample	CO µmol/g	CO ₂ µmol/g	O µmol/g	ΔO^* $\mu mol/g$	$\frac{CO}{CO_2}$	$S_{\rm BET}$ (m ² /g)	$V_{\rm DR}(\rm N_2)$ $(\rm cm^3/g)$	%S _{BET}
ZTC	2644	286	3216	0	9.24	3650	1.54	100
ZTC 20Cl- 1h	4398	529	5456	2240	8.31	2780	1.21	76
ZTC 50Cl ⁻ 1h	5083	709	6501	3285	7.17	2680	1.16	73
ZTC 5Cl ⁻ 15h	4669	1146	6961	3745	4.07	2430	1.01	67
ZTC 50Cl ⁻ 3h	5880	1760	9400	6184	3.34	1210	0.50	33
ZTC 50Cl- 10h	4849	4002	12853	9637	1.21	150	0.06	4
ZTC 50H ⁺ 1h	3442	435	4312	1096	7.91	3100	1.31	85
ZTC 5H ⁺ 15h	6095	1090	8275	5059	5.59	2290	0.89	63
ZTC 2H ⁺ 36 h (1.2V)	7159	1966	11091	7875	3.64	1863	0.77	51

	TPD					N_2 adsorption		
Sample	CO µmol/g	CO ₂ µmol/g	O µmol/g	ΔO^* µmol/g	$\frac{CO}{CO_2}$	$\frac{S_{\rm BET}}{({\rm m}^2/{\rm g})}$	$V_{\rm DR}(\rm N_2)$ $(\rm cm^3/g)$	%S _{BET}
ZTC	2644	286	3216	0	9.24	3650	1.54	100
ZTC 20Cl ⁻ 1h	4398	529	5456	2240	8.31	2780	1.21	76
ZTC 50Cl ⁻ 1h	5083	709	6501	3285	7.17	2680	1.16	73
ZTC 5Cl- 15h	4669	1146	6961	3745	4.07	2430	1.01	67
ZTC 50Cl ⁻ 3h	5880	1760	9400	6184	3.34	1210	0.50	33
ZTC 50Cl- 10h	4849	4002	12853	9637	1.21	150	0.06	4
ZTC 50H ⁺ 1h	3442	435	4312	1096	7.91	3100	1.31	85
ZTC 5H ⁺ 15h	6095	1090	8275	5059	5.59	2290	0.89	63
ZTC 2H ⁺ 36 h (1.2V)	7159	1966	11091	7875	3.64	1863	0.77	51

7875

3.64

1863

 $S_{BET} = 2938 \text{ m}^2/\text{g}$

51

0.77

	TPD
Sample	CO/CO ₂
ZTC	9.24
0.8 V	7.88
0.9 V	5.21
1.0 V	4.68
1.1 V	3.29

Total capacitance (from charge-discharge at 50 mA/g in H_2SO_4):

-After CV oxidation up to 0.8 V, C = 500 F/g

-After CV oxidation up to 1.1 V, C = 700 F/g

Very close to conducting polymers (Pani nanobelts 873 F/g) or ruthenium oxide (720 F/g)*

(*) JN Tiwari, RN Tiwari, KS Kim, Progress in Materials Sci, 57 (2012) 724

CONCLUSIONS

- Synthesis of ZTC alloy has been studied by chemical and electrochemical oxidations.
- Chemical oxidation easily destroys the ZTC. Reaction rate is high at the beginning of the oxidation.
- Electrochemical oxidation permits a better control of the kinetics of the process.
- -ZTC alloy with BET surface area close to 1900 m²/g and oxygen content of 18 wt% has been successfully synthesised.
- ZTC alloy by cyclic voltammetry has a capacitance as high as 700 F/g.

Thank you very much for your attention

