Quantum Dot-Sensitized Solar Cells —Photovoltaic Properties and Photoexcited Carrier Dynamics—

T. Toyoda^{1,2} and Q. Shen^{1,2,3}

¹Department of Engineering Science

The University of Electro-Communications

Chofu, Tokyo 182-8585, Japan

²CREST, ³PRESTO, Japan Science and

Technology Agency (JST)

Main Research Plan

In order to achieve higher photovoltaic conversion efficiency of quantum dot-sensitized solar cell (QDSSC),

further basic research on 1) nanostructured

<u>*TiO₂ electrode*</u> and 2) <u>sensitizer</u>

is important and essential

(with characterizations of morphology, structure, optical absorption, charge transfer, energy transfer, recombination processes, and so on).

Advantages of Semiconductor Quantum Dot as Sensitizer

- Quantum confinement allows for <u>energy gap</u> <u>tunable</u> across the solar spectrum.
- Higher optical absorption resulting from quantum confinement.
- Larger intrinsic dipole moment which may lead to rapid charge separation and band alignment.
- Inorganic nature.
- Possibility of <u>multiple exciton generation</u>.

Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells

Iván Mora-Seró* and Juan Bisquert

Grup de Dispositius Fotovoltaics i Optoelectrònics, Departament de Física, Universitat Jaume I, 12071 Castelló, Spain

J. Phys. Chem. Lett. 2010, 1, 3046-3052

Starting from quite low conversion efficiencies, these semiconductor sensitized solar cells have grown very rapidly to values around 4-5%.

Breakthroughs will come from (i) materials, (ii) surface treatments, and (iii) nanocomposite absorbers.

The semiconductor light-absorber properties dictate the requirements that the other components of the device need to satisfy.

Motivations

Morphologies of TiO₂ electrodes and **choices of sensitizers** are important factors for sensitized solar cells.

→In this study, we prepare inverse opal TiO₂ (& TiO₂ nanotube) electrodes adsorbed with multilayered semiconductor quantum dots of CdS/CdSe.

<u>Relaxation processes</u> in photoexcited carriers are important factors not only for basic studies but applied research in solar cells.

→ In this study, we characterize the <u>ultrafast photoexcited</u> <u>carrier dynamics</u> of inverse opal TiO₂ electrodes with multilayred semiconductor quantum dots.

2) S. Gorer and G. Hodes, J. Phys. Chem. 98 (1994) 5338.

3) S.M.Yang et al., J. Mater. Chem. 12 (2002) 1459.

Improvement

Advantages of inverse opal structure in solar cell application are,

- (1) <u>Smooth electron transport</u> owing to topological interconnected material.
- (2) <u>Better penetration of sensitizer</u> owing to macroporous structure.
- (3) <u>Enhancement of optical absorption</u> owing to photon localization.

Preparation of Inverse Opal TiO₂ Electrode

L. J. Diguna et. al., Jpn. J. Appl. Phys. 45 (2006) 5563.

SEM Images

IO TiO₂ adsorbed with CdSe QDs

Inverse Opal (IO) TiO₂

(IO)

BF-STEM Image

HAADF-STEM Image

Adsoption of CdS QDs at 0.5 hours and CdSe QDs at 6 hours (multi-layered) shows higher IPCE value than CdSe QDs (single-layered) at 6 hours.

 $\bullet 55 \% \rightarrow 75 \%$

Photovoltaic Performance

J-V Characteristics

Sample	J _{sc} (mA/cm ²)	V _{oc} (V)	FF	η (%)
CdSe (6h)	7.7	0.72	0.53	2.9
CdS (0.5h)/CdSe(6h)	10.3	0.75	0.49	3.8

CdS/CdSe QDs on TiO₂ <u>nanotube</u> electrodes

	J _{SC} (mA/cm ²)	V _{oc} (V)	FF	η (%)	$\frac{R_{\rm sh}}{(\rm k\Omega\cdot cm^2)}$	$\frac{R_{\rm s}}{(\Omega \cdot \rm cm^2)}$
CdS/CdSe	5.8	0.47	0.54	1.48	0.4	7
CdSe(3h)	4.6	0.46	0.46	0.99	0.9	4×10
CdSe/CdS	3.1	0.46	0.40	0.56	0.3	7×10

Improved Transient Grating (TG) Technique

Detailed understanding of photoexcited carrier dynamics is required to understand and improve photovoltaic properties of solar cells, that is satisfied using ultrafast transient grating technique.

TG response in IO TiO₂/CdSe electrode¹⁾

TG response in IO TiO₂/CdS/CdSe electrode

Sample	τ ₁ (ps)	τ ₂ (ps)
$TiO_2(IO)/CdSe$ (6 h)	8±1	98 ± 10
$TiO_2(IO)/CdS (0.5 h)/CdSe(6 h)$	9 ± 1	67 ± 7

Velocity constant in electron relaxation processes

Summary (Japan)

- Quantum confinement effect by multilayerd CdS/CdSe quantum dot on inverse opal TiO₂ electrode can be observed by photoacoustic spectroscopy.
- Photosensitization by multilayered CdS/CdSe quantum dot on inverse opal TiO₂ electrode is realized and the suitable adsorption time is existed for the photocurrent.
- The maximum photovoltaic conversion efficiency of 3.8% can be achieved on inverse opal TiO₂ electrode adsorbed with multilayered CdS/CdSe quantum dots, <u>having the correlation with ultrafast carrier dynamics</u> (faster electron velocity constant in CdS/CdSe than in CdSe).

- TiO₂ morphology and quantum dots adsorption method is the key role on the performance of QDSSCs.
- The dependence of <u>the photovoltaic conversion efficiency is</u> <u>different for quantum dots adsorption method</u> (CBD and SILAR).
- The recombination and injection analysis indicate that <u>CBD and SILAR methods produce with significantly</u> <u>different properties with photovoltaic properties</u>.
- Injection kinetics is also dependent on both the TiO₂ morphology and quantum dots adsorption method, being systematically faster for CBD.

Future Studies

- Characterization of photoexcited carrier dynamics for <u>wider</u> <u>time domain</u> (femtoseconds to microseconds) with different wavelength of pump beam.
- Correlation between <u>electron-phonon interaction</u> with different phonon modes and photovoltaic properties.
- Surface coating of quantum dot.
- Combined quantum dots (eg. CdSe/CdTe, CdSe/metal quantum dots).
- Suitable <u>counter electrode</u> and <u>electrolyte</u> for quantum dotsensitized solar cell system.
- Electrochemical impedance characterization.

Recent Publications

- 1. T. Toyoda and Q. Shen: Quantum dot-sensitized solar cells: Effect of nanostructured TiO₂ morphologies on photovoltaic properties, *J. Phys. Chem. Lett.* **3**, 1885 (2012).
- M. Samadpour, S. Giménez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. Zad, T. Toyoda, H. Míguez, and I. Mora-Seró: Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells, *Electrochim. Acta* 75, 139 (2012).
- 3. S. Hachiya, Y. Onishi, Q. Shen, and T. Toyoda: Dependences of the optical absorption and photovoltaic properties of CdS quantum dot-sensitized solar cells on the CdS quantum dot adsorption time, *J. Appl. Phys.* **110**, 054319 (2011).
- 4. N. Guijarro, J. M. Campiña, Q. Shen, T. Toyoda, T. Lana-Villarreal, and R. Gómez: Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells, *Phys. Chem. Chem. Phys.* **13**, 12024 (2011).
- 5. Q. Shen, Y. Ayuzawa, K. Katayama, T. Sawada, and T. Toyoda: Separation of ultrafast photoexcited electron and hole dynamics in CdSe quantum dots adsorbed onto nanostructured TiO₂ films, *Appl. Phys. Lett.* **97**, 263113 (2010).
- 6. Q. Shen, A. Yamada, S. Tamura, and T. Toyoda: Quantum dot-sensitized solar cell employing TiO₂ nanotube working-electrode and Cu₂S counter-electrode, *Appl. Phys. Lett.* **97**, 123107 (2010).
- N. Guijarro, Q. Shen, S. Giménez, I. Mora-Seró, J. Bisquert, T. Lana-Villarreal, T. Toyoda, and R. Gómez: Direct correlation between ultrafasrt injection and photoanode performance in quantum-dot sensitized solar cells, *J. Phys. Chem. C* 114, 22352 (2010).
- N. Guijarro, T. Lana-Villarreal, Q. Shen, T. Toyoda, and R. Gómez: Sensitization of titanium dioxide photoanodes with cadmium selenide quantum-dots prepared by SILAR: Photoelectro-chemical and carrier dynamics studies, *J. Phys. Chem. C* 114, 21928 (2010).

Inverse Opal versus Nanocrystalline TiO₂

Inverse opal TiO2 (relative to nanocrystalline TiO2)Higher VocLarger amount of CdSe QDs on thinner TiO2 electrode(highly increase of the quasi Fermi level)Higher FFMacroporous structure(efficient hole transport to the electrolyte)