

Japanese-Danish Joint Workshop Future Green Technology

Effects of Inflow Wind Condition and Structural Oscillation on Blade Loads of HAWT Rotor

Yutaka HASEGAWA Nagoya Institute of Technology

CONTENTS

- Background & Objectives
- Inflow effects on blade load
 - research procedure
 - results & discussions
- Oscillation effects on blade load
 - research procedure
 - results & discussions
- Summary & Future works

Many turbines installed in mountainous area, in Japan:

- High turbulence intensity over the complex terrain.
- Special attention should be paid to effects of inflow condition on fatigue load.

(長) Background 2/2

Increasing size of wind turbines:

\Rightarrow **Decrease** in eigen freq.

of blade oscillation

- close to rotational freq. for large rotors
- possible resonant oscillation of blade

\Rightarrow Increase in non-uniformity of inflow

into rotor plane,

leads to increased effects from inflow condition

In order to design large wind turbines

Effects of **inflow condition** and **blade oscillation** on the **blade loads** have to be predicted in design process.

Large Wind Turbine (D=126m, P=5MW)

Objective I: Clarify effects of inflow condition on blade loads by simple numerical analysis

Objective II : Clarify effects of blade oscillation on blade loads by fluid-oscillation coupled analysis

(天) Objective I and Procedure I

Objective : Clarify effects of inflow condition on blade loads by simple numerical analysis

5/26

Wind Simulation

Simulation of turbulence by Mann Model

L

ε

 $\alpha_{\rm K}$

13

12

10

9

Wind Speed W [m/s]

- Generates turbulent wind time series at multiple points on rotor plane
- Takes account of spatial correlation between time series
- Power Spectrum :

von Karman Spectrum (isotropic turbulence)

$$E(k) = \alpha_{\kappa} \varepsilon^{\frac{2}{3}} L^{\frac{5}{3}} \frac{L^{4} k^{4}}{(1 + L^{2} k^{2})^{\frac{17}{6}}}$$

Example of turbulent inflow by Mann model

(夫) Aerodynamic Load Calculation Model 7/26

Acceleration Potential Method

- Assume inviscid and incompressible flow
- Laplace equation for pressure perturbation

Euler eq.

Laplace eq.

 $\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla \boldsymbol{p} \quad \frac{\text{linearized}}{\boldsymbol{b}} \quad \nabla^2 \boldsymbol{p} = \frac{\partial^2 \boldsymbol{p}}{\partial \boldsymbol{x}^2} + \frac{\partial^2 \boldsymbol{p}}{\partial \boldsymbol{y}^2} + \frac{\partial^2 \boldsymbol{p}}{\partial \boldsymbol{z}^2} = \mathbf{0}$

- Representation of rotor blades by spanwise and chordwise pressure distributions
- Ability to handle three dimensional unsteady flow without using empirical constants unlike BEM

Rotor blade represented by pressure

(政) Calculation Condition

Rotor configuration I :

Tjæreborg Turbine (Denmark)

number of blades	3	rotor diameter	61 [m]
rotational speed	22 [rpm]	rated power output	2 [MW]

Tjæreborg Turbine

Power Coefficient: $C_{P} = \frac{P}{\rho W_{hub}^{3} \pi R^{2}/2}$ Tip Speed Ratio: $\lambda = \frac{\Omega R}{W_{hub}}$

ratio of the rotor tip speed to the wind speed

Examples of inflow conditions

- > Yawed inflow (uniform inflow with yaw misalignment)
- Turbulent inflow
- Yawed turbulent inflow (turbulent inflow with yaw misalignment)

- Is summation of individual inflow effects on fatigue load equal to combined inflow effects??
- Yawed inflow effects are not considered in the fatigue load analysis in IEC standard.

(沃) Yawed Inflow 1/3

Relative flow to the rotating blade section changes periodically

- In the rotor plane
- Upper half : smaller attack angle lower blade load
- Lower half :
 - larger attack angle 🔶 higher blade load

 θ_{vaw}

10/26

(法) Yawed Inflow 2/3

Relative flow to the rotating blade section changes periodically

In the rotor plane

► Upper half : smaller attack angle → lower blade load

Lower half :

larger attack angle 🛛 🔶 higher blade load

Relative flow to blade section at the bottom of rotor plane

11/26

(法) Yawed Inflow 3/3

Relative flow to the rotating blade section changes periodically

In the rotor plane

► Upper half : smaller attack angle → lower load

Lower half :

larger attack angle \rightarrow higher load

Yawed uniform inflow Periodic fluctuation due to yaw misalignment

 θ_{vaw}

Definition of Flapwise Moment

Turbulent Inflow without Yaw Misalignment

Blade load due to turbulence

- >> Complex fluctuation of blade load
- Amplitude of fluctuation increases with turbulence intensity T/

Turbulent inflow

$$TI = \frac{\sigma}{W_{hub}}$$

 σ : standard deviation of velocity fluctuation W_{hub} : velocity at hub height

(政) Yawed Turbulent Inflow 1/2

14/26

Turbulent Inflow with Yaw Misalignment

Fatigue load on blade

- Yawed uniform inflow condition
 - \rightarrow Linear increase with yaw misalignment angle
- Yawed turbulent inflow condition
 - \rightarrow Non-linear increase with yaw misalignment angle

(政) Yawed Turbulent Inflow 2/2

Turbulent Inflow with Yaw Misalignment

Compare effects of turbulent components

- Iongitudinal component
- Iateral component
- vertical component
- 3d isotropic turbulence

▶ Normal Inflow (θ_{yaw} =0deg)

- Iongitudinal comp. has dominant effect on Fatigue Load
- small effect from lateral and vertical comp.

Yawed Inflow

 lateral comp. gives larger effects with yaw misalignment angle

Effect of turbulence component and yaw misalignment on fatigue load on blade

16/26

• Objective I: Clarify the effects of inflow condition on blade loads by simple analysis

Objective II : Clarify the effects of blade oscillation on blade loads by fluid-oscillation coupled analysis

Two-way coupled analysis model

(私) Calculation Condition II

Reference Data : Wind tunnel experiment conducted by NREL (National Renewable Energy Laboratory)

Configuration of NREL Rotor

Blade num.	2	Rotational speed	72 [rpm]
Rotor diameter	10 [m]	Wing section	NREL S809

Calculation Condition

Uniform inflow	without turbulence	
Yaw Misalignment	0∼30 [deg]	
Wind Speed	5~12 [m/s]	

17/26

Yawed uniform inflow

• **Objective I**: Clarify the effects of **inflow condition** on blade loads by **simple analysis**

Procedure II : Clarify the effects of blade oscillation on blade loads by fluid-oscillation coupled analysis

Two-way coupled analysis model

(私) Blade Oscillation Model

19/26

Multi Body Dynamics Model

- Represent rotor blade by combination of Rigid Bodies and Hinge Springs
- Consider forces on bodies
 Aerodynamic, Gravity, Centrifugal, and Coriolis forces
 as well as Restoring and
 Damping Moments from Hinges
- Examine Flapwise and Edgewise oscillations in the present study

Multi body dynamics

Verification of Oscillation Model

• Compare Eigen Frequencies of Static Blade

Mode	Calculation	Experiment
Flapwise 1 st	7.39 Hz	7.31 Hz
2nd	30.2 Hz	30.1 Hz
Edgewise 1 st	9.27 Hz	9.06 Hz
2nd	64.9 Hz	-

Validity of Oscillation model

(法) Coupled Analysis Results

Blade Load Fluctuation in Flapwise direction

<u>Aerodynamic Moment</u>

Integrated moment due to aerodynamic force

Exp. results are obtained from pressure distribution on blade.

Structural Bending Moment

Product of spring constant & bent angle

of hinge spring at blade root

Exp. results are obtained by strain gauge installed at blade root.

yawed inflow

(私) Coupled Analysis Results

Blade Load Fluctuation in Flapwise direction

Aerodynamic Moment

Peaks at rotation freq. and its harmonics \rightarrow *due to Rotational Sampling Effects*

Structural Bending Moment

Additional peak at 1st eigen freq. of blade structure

From comparison between Exp. and Cal.,

Calculation results are improved by including tower model.

fects vind yawed inflow

21/26

(私) Coupled Analysis Results

Blade Load Fluctuation in Edgewise direction

Aerodynamic Moment

Amplitude is much smaller than Structural Bending Moment

Structural Bending Moment

Gravitational Force Effects are dominant

Tower Effects on edgewise moment

W=7m/s $\phi_{v}=30 \deg$ Exp. f_{rev} Cal. PSD of Edgewise Fluid Moment $[N^2m^2s]$ $2f_{rev}$ Cal.+Tower 10^{6} $3f_{rev}$ 10 10^{2} 10^{0} 10^{-2} 10-4 10 Frequency f [Hz] **Aerodynamic Moment**

Edgewise dir.

22/26

yawed inflow

Inflow condition effects such as yaw misalignment turbulence on fatigue load of HAWT rotor have been examined by simple numerical calculation.

For turbulent inflow condition,

- Longitudinal component of turbulence has dominant effects on fatigue load.
- Effects from lateral and vertical components are negligible for fatigue load evaluation.

For combined inflow condition of yaw misalignment and turbulence,

- Lateral and vertical components effects increase with yaw misalignment angle.
- 3d turbulence is necessary for fatigue load calculation.

Turbulent inflow

A fluid-oscillation coupled analysis model has been constructed for the estimation of the flapwise and the edgewise blade loads of HAWT rotor.

Validity of the coupled analysis model is improved by introducing the tower model into the aerodynamic calculation for flapwise component.

Tower effects can scarcely be seen in the edgewise structural moment, which is dominated by the gravitational force.

(政) Our Future Work I

Design of Turbine Control

- Include power-train model
- Decrease fatigue load, power fluctuation
- Suppress structural oscillation

25/26

26/26

Application to Off-shore Turbine

Include floating structure model

Thank you for your kind attention . . .