10-11/12/2012

Effects of Inflow Wind Condition

and Structural Oscillation
on Blade Loads of HAWT Rotor

Yutaka HASEGAWA
Nagoya Institute of Technology

CONTENTS

» Background & Objectives
» Inflow effects on blade load
- research procedure
- results & discussions
» Oscillation effects on blade load
- research procedure
- results & discussions
» Summary & Future works




@ Background 1/2

» Many turbines installed in mountainous area, in Japan:
- High turbulence intensity over the complex terrain.
- Special attention should be paid to effects of inflow condition
on fatigue load.
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@ Background 2/2

» Increasing size of wind turbines:

(m)

— Decrease in eigen freq.

of blade oscillation
- close to rotational freq. for large rotors
- possible resonant oscillation of blade
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= Increase in non-uniformity of inflow
Increase in Rotor Dlameter

into rotor plane,
leads to increased effects from inflow condition

Rotor Diameter [m]
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In order to design large wind turbines I

Effects of inflow condition and
blade oscillation on the blade loads

have to be predicted in design process.

Large Wind Turbine
(D=126m, P=5MW)
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. Objectives

nstitutt

» Objective | : Clarify effects of inflow condition on blade loads
by simple numerical analysis
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Yaw misalignment Sheared inflow Turbulent inflow Combined inflow

» Objective Il : Claiify effects of blade oscillation on blade loads
by fluid-oscillation coupled analysis

. Aerodynamic Load - -
Aerodynamic H > Oscillation
Analysis < Analysis
Displacement &
Flow Field around Rotor Velocity of Blade Oscillation
(Panel Method) Blade Oscillation (Multi-Body Dynamics)

Two-way coupled analysis model




@ Objective | and Procedure |

» Objective | : Clarify effects of inflow condition on blade loads
by simple numerical analysis
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Yaw misalignment Sheared inflow Turbulent inflow Combined inflow
» Procedure | : Aerodynamic load calculation:
Acceleration Potential Method

Wind shear: Power law
Turbulence: Mann model

Wind simulation: )L
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. Wind Simulation

aQOya InstltLlt

m Simulation of turbulence by VMann Model

» Generates turbulent wind time series
at multiple points on rotor plane

» Takes account of spatial correlation
between time series

rotor plane
win
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@} Aerodynamic Load Cailculation Model

agoya Institut*

= Acceleration Potential Method
» Assume inviscid and incompressible flow
» Laplace equation for pressure perturbation

Euler eq. Laplace eq.
OV y.yy=-2Llyp linearized pp V2p=62p+62p+62p=
ot Yo, ox> oy? oz?

» Representation of rotor blades by spanwise and chordwise
pressure distributions
» Ability to handle three dimensional unsteady flow
without using empirical constants unlike BEM
‘\ rotor blade

air particle _
o collocation
\ points
wind
A _

Collocation points on blade

Rotor blade represented by pressure




@-} Calculation Condition |

B Rotor configuration | :

» Tjeereborg Turbine (Denmark)

number of blades 3 rotor diameter |61 [m]

rotational speed 22 [rpm] | rated power output 2 [MW]

B Validity of calculation method

BLE & experiment [Hansen et al., 1989] |
~ 0.6 calculation . :
S} , Tjeereborg Turbine
WCT; 0.5 /‘/. ¢ e
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Tip Speed Ratio: A= IR

pitch control
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) calculated Results

H Examples of inflow conditions

» Yawed inflow (uniform inflow with yaw misalignment)
» Turbulent inflow

» Yawed turbulent inflow (turbulent inflow with yaw misalignment)
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Yawed inflow Turbulent inflow Yawed turbulent inflow

» Is summation of individual inflow effects on fatigue load
equal to combined inflow effects??

» Yawed inflow effects are not considered
in the fatigue load analysis in IEC standard.



&) yawed Inflow 1/3

B Relative flow to the rotating blade section
changes periodically

In the rotor plane .....

» Upper half
smaller attack angle =—» lower blade load

Relative flow to blade section

at the top of rotor plane




&) yawed Inflow 2/3

B Relative flow to the rotating blade section
changes periodically

In the rotor plane .....

L \.
» Lower half : Yawed uniform inf-[o-\:/\\'/'
larger attack angle > higher blade load

Relative flow to blade section

at the bottom of rotor plane




&) yawed Inflow 3/3

B Relative flow to the rotating blade section
changes periodically

In the rotor plane .....

» Upper half
smaller attack angle — lower load
» Lower half

larger attack angle —» higher load Periodic fluctuation
due to yaw misalignment

Yawed uniform inf'l{o{/‘\'/'
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Definition of Flapwise Moment Flapwise moment fluctuation

due to vaw misaligonment at A=8
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~==. Turbulent Inflow
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» Blade load due to turbulence

» Complex fluctuation of blade load
» Amplitude of fluctuation

Increases with turbulence intensity T/

Turbulence Intensity : TI=-9—
hub

o . standard deviation of
velocity fluctuation

W, ,p: Vvelocity at hub height
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Vw@-\m Yawed Turbulent Inflow 1/2 14/26
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H Turbulent Inflow with Yaw Misalignment

» Fatigue load on blade

« Yawed uniform inflow condition
— Linear increase with yaw misalignment angle
« Yawed turbulent inflow condition Yawed turbulent inflow
— Non-linear increase with yaw misalignment angle
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Vw@-\m Yawed Turbulent Inflow 2/2 15/26
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H Turbulent Inflow with Yaw Misalignment

» Compare effects of turbulent components

<« longitudinal component
M lateral component

P vertical component

@ 3d isotropic turbulence

vawed turbulent inflow
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with yaw misalignment angl
th ya salignment angle Effect of turbulence component and yaw

misalignment on fatigue load on blade




@ Objectives II

» Objective Il : Clarify the effects of blade oscillation on blade loads
by fluid-oscillation coupled analysis

Aerodynamic Load

Aerodynamic > Oscillation
Analysis < Analysis
Displacement &

Flow Field around Rotor Velocity of Blade Oscillation
(Panel Method) Blade Oscillation (Multi-Body Dynamics)

Two-way coupled analysis model
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Calculation Condition |

Reference Data : Wind tunnel experiment conducted by
NREL (National Renewable Energy Laboratory)

B Configuration of NREL Rotor

Blade num. 2

Rotational speed

72 [rpm]

Rotor diameter

10 [m]

Wing section

NREL S809

B Calculation Condition

Uniform inflow

without turbulence

Yaw Misalignment

0~30 [deg]

Wind Speed

5~12 [m/s]

Yawed uniform inflow




& Procedure Il

» Procedure Il :Clarify the effects of blade oscillation on blade loads
by fluid-oscillation coupled analysis

Aerodynamic Load

Aerodynamic > Oscillation
Analysis < Analysis
Displacement &

Flow Field around Rotor Velocity of Blade Oscillation
(Panel Method) Blade Oscillation (Multi-Body Dynamics)

blades, wake vortices
and tower are modeled
by vortex lattices

Two-way coupled analysis model




B H I
® Multi Body Dynamics Model | Flapwise
» Represent rotor blade by combination of ‘ Oscillation
Rigid Bodies and Hinge Springs _ Edgewise
. . .Modelm Oscillation
» Consider forces on bodies =
Aerodynamic, Gravity, 7
Centrifugal, and Coriolis forces
Rotor Axis

as well as Restoring and

Damping Moments from Hinges

» Examine Flapwise and Edgewise oscillations

o Hinge spring

in the present study

Multi body dynamics

H Verification of Oscillation Model

» Compare Eigen Frequencies of Static Blade

Calculation Experiment
Flapwise 1 st 7.39 Hz 7.31 Hz
2nd 30.2 Hz 30.1 Hz

Edgewise 1 st 9.27 Hz 9.06 Hz

2nd 64.9 Hz -

Validity of
Oscillation model




¢ Coupled Analysis Results

m Blade Load Fluctuation in Flapwise direction

» Aerodynamic Moment
Integrated moment due to aerodynamic force
EXxp. results are obtained from pressure distribution on blade.
» Structural Bending Moment
Product of spring constant & bent angle
of hinge spring at blade root yawed inflow
Exp. results are obtained by strain gauge installed at blade root.
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¢ coupled Analysis Results

m Blade Load Fluctuation in Flapwise direction

» Aerodynamic Moment
Peaks at rotation freq. and its harmonics —due to Rotational Sampling Effects

» Structural Bending Moment
Additional peak at 1st eigen freq. of blade structure

» From comparison between Exp. and Cal.,

Calculation results are improved by including tower model. yawed inflow
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¢ Coupled Analysis Results

B Blade Load Fluctuation in Edgewise direction - . iscair

» Aerodynamic Moment
Amplitude is much smaller than Structural Bending Moment

» Structural Bending Moment
Gravitational Force Effects are dominant

» Tower Effects on edgewise moment
Scarcely seen in calculated results

vawed inflow
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& Summary |

Inflow condition effects such as

v yaw misalignment

v turbulence
on fatigue load of HAWT rotor have been examined
by simple numerical calculation.

B For turbulent inflow condition,

v Longitudinal component of turbulence
has dominant effects on fatigue load. %

v Effects from lateral and vertical components

are negligible for fatigue load evaluation.
Turbulent inflow

B For combined inflow condition of
yaw misalignment and turbulence,
v Lateral and vertical components effects
increase with yaw misalignment angle.

v 3d turbulence is necessary Yawed turbulent inflow
for fatigue load calculation.
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& Summary II

A fluid-oscillation coupled analysis model has been constructed

for the estimation of the flapwise and the edgewise blade loads
of HAWT rotor.

B Validity of the coupled analysis model is improved
by introducing the tower model into the aerodynamic
calculation for flapwise component.

B Tower effects can scarcely be seen
in the edgewise structural moment,
which is dominated by the gravitational force.

Aerodynamic ferodynamic Load > Oscillation
Analysis < Analysis
Displacement &

Velocity of
Blade Oscillation

Two-way coupled analysis model




& Our Future Work |

H Design of Turbine Control
» Include power-train model
» Decrease fatigue load, power fluctuation
» Suppress structural oscillation

Aerodynamic Load

Inflow Wind Model * Calculation Model

Coupled Analysis

. — . .
Power-Train Model > |Structura| Oscillation Model

Coupled Analysis




& Our Future Work II

H Application to Off-shore Turbine
» Include floating structure model

Aerodynamic Load
Calculation Model

Coupled Analysis

. — . .
Floating Structure Mode!l | m— Structural Oscillation Model

Coupled Analysis
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