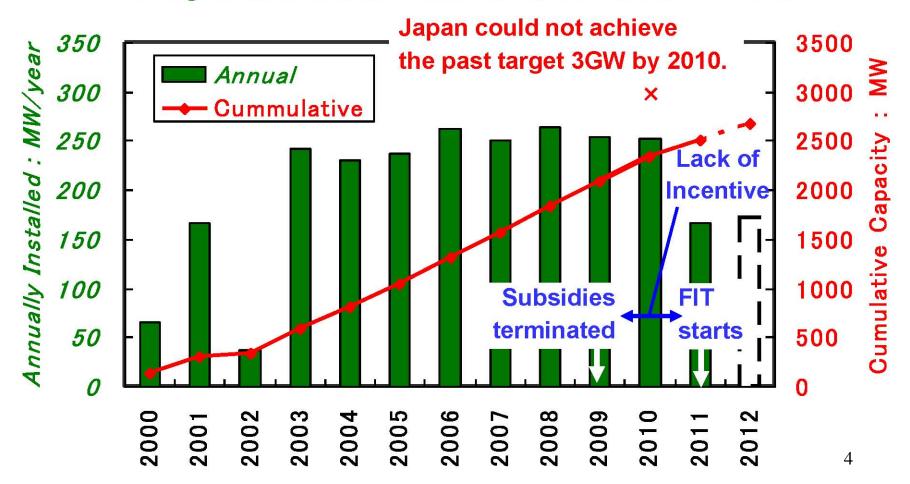
RECENT DEVELOPMENT AND CHALLENGES OF WIND TURBINE TECHNOLOGY

Kamisu, Japan / 2MW x 7

Chuichi Arakawa The University of Tokyo

- This wind farm withstood Tsunami on 3.11
- 7 units of 2MW Wind Turbine
- Being developed as private sector for future such as more 7 units and Giga-watt farm

World Total Installed Capacity [MW]



	T . 10				
	Total Capacity		Total Capacity		Total Capacity
Country	end of 2011	Capacity 2011	end 2010	Capacity 2010	end 2009
	[MW]	[MW]	[MW]	[MW]	[MW]
China *	62.733	18.000	44.733	18.928	25.810
USA	46.919	6.810	40.180	5.600	35.159
Germany	29.075	2.007	27.215	1.551	25.777
Spain	21.673	1.050	20.676	1.515	18.865
India *	15.800	2.700	13.065	1.258	11.807
Italy *	6.747	950	5.797	950	4.850
France	6.640	980	5.660	1.086	4.574
United Kingdom	6.018	730	5.203	962	4.245
Canada	5.265	1.267	4.008	690	3.319
Portugal *	4.290	588	3.702	345	3.357
Denmark	3.927	180	3.803	309	3.460
Sweden	2.816	746	2.052	603	1.450
Japan	2.501	167	2.334	251	2.083
Rest of the World*	24.200	6.000	18.201	3.191	15.010
Total*	238.604	42.175	196.629	37.642	159.766
*- Preliminary Data					© WWEA 2012

Wind Power Generation in Japan

Latest wind Power Statistics in Japan (at the end of 2011)

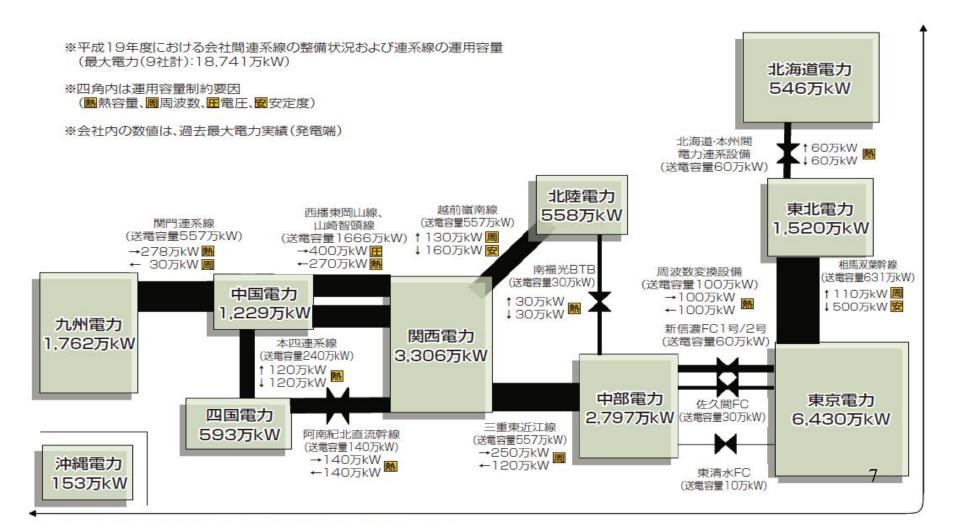
- Total installed wind generation: 2,501MW, 1,832 units
- New wind generation installed : 167 MW / year
- Total electric output from wind : 4246 GWh / year
- Wind generation share of national electric demand: 0.5 %

New Guideline for Wind Turbines in Japan and Asian Area

Typhoon Attack

Miyako Island was hit by huge Typhoon #14 on 11.Sep.2003 and all 7 WT were destroyed; 3 fallen down, 3 lost blades, 1 lost nacelle roof

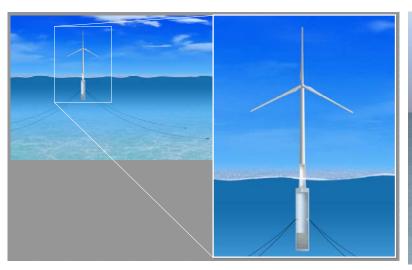
NEW MW-class Machines in Japan



SUBARU 80/2.0 (FHI) 2 MW WT

Grid Connection in Japan

- Wind power was not allowed to use grid connection between each area.
- Wind potential exists strongly in Hokkaido, Tohoku and Kyushu.

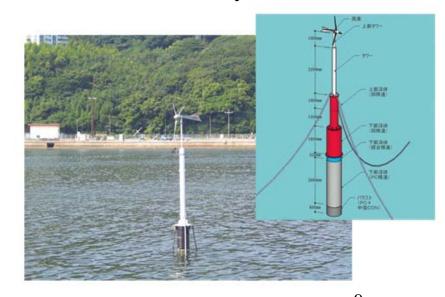


NEDO R&D Offshore Windpower Generation

- Offshore Windturbine Demonstration PJ
 - 2.4MW at Choshi, 2MW at Hibikinada in 2012
- Offshore Windfarm Feasibility Study
 - 4 districts are chozen in 2011.
- Super Large Windturbine Development
- Ocean Energy Potential Study
- Floating Offshore Windturbine Basic study

However, we have delay of more than 10 years for offshore in Europe. Furthermore, the national project is planned to have only one turbine. We should accelerate wind power to cover nuclear in high speed. 8

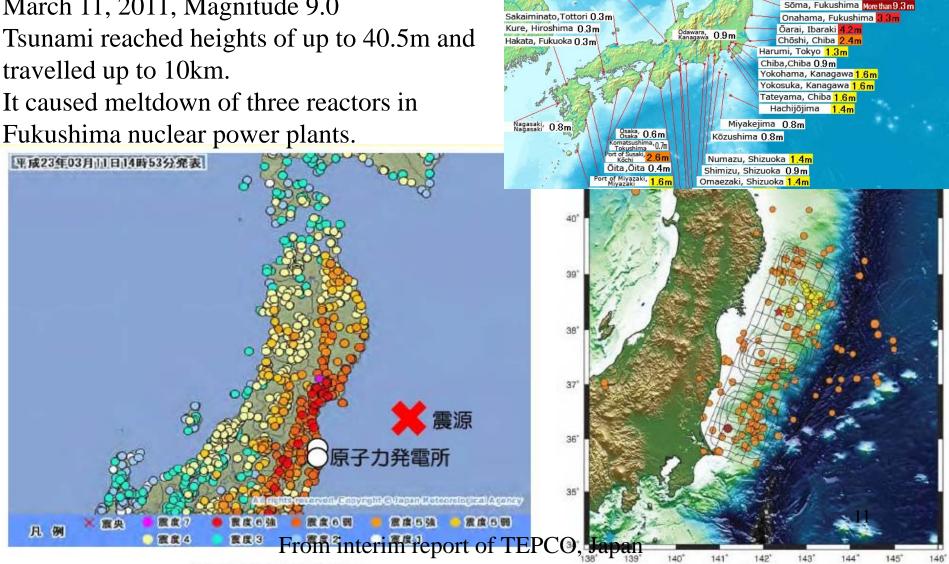
Domestic Project of Deep Offshore



Semi-sub type; Prof. Ishihara in Uni. of Tokyo, TEPC O, etc

Spar type; Prof. Suzuki in Uni. of Tokyo

Sailing type; Environment Institute & Prof. Kinoshita in Uni. of Tokyo



Scale model of Spar type: Prof. Utsunomiya in Kyoto Uni., Toda-Kensetsu, etc

2011 Earthquake off the Pacific Coast of Tohoku, Japan

March 11, 2011, Magnitude 9.0 Tsunami reached heights of up to 40.5m and travelled up to 10km.

Ishikari New Port, Hokkaidō 0.4m

Sakata, Yamagata 0.4m

Niigata, Niigata 0.2 m

Nemuro, Hokkaidō Hamanaka, Hokkaidō Erimo, Hokkaidō

Mutsu, Aomori

Hachinohe, Aomori Morethan 2.7 m

Miyako, Iwate Morethan 8.5 m

Kamaishi, Iwate Morethan 4.1 m

Ōfunato, Iwate Morethan 8.0m

Ishinomaki, Miyagi Morethan 7.6 m

Tomakomai East Port, Hokkaidō Morethan 2.5r

Kanazawa, Ishikawa 0.2m

Tsuruga, Fukui 0.3m

Only 1 WTG was damaged by liquefaction

1 WTG at Sumiit Windpower Kashima in Ibaraki Pref. about 300 km far from the epicenter, has been leaned a little by severe liquefaction. This windfarm is consisted by 10 Gamesa G80 2MW turbines, the other 9 turbines are in the normal condition.

Ref: Geotechnical Quick Report on the Kanto Plain Region during the March 11, 2011,
Off Pacific Coast of Tohoku Earthquake, Japan
Geotechnical Extreme Events Reconnaissance (GEER), April 5, 2011

Potential Map of Wind Power in Japan

- •Report of investigation for renewable energy in Ministry of Environment in 2011
- •280 GW for onshore, 1600 GW for offshore as potential value
- •273 GW for onshore, 141 GW for offshore under some scenario such as half-price

JWPA's proposal to Japanese Government

- Wind power shall supply 10% electricity demand in Japan by 2050.
- Installed capacity shall be 11.1GW in 2020 and 50GW in 2050. 50GW = On-shore 25GW + Off-shore 7.5GW + Floating 17.5GW
- Offshore (Founding type) will be promoted after 2015.
- Offshore (Floating type) will be promoted after 2020. **50GW** Roadmap for Wind Power Development in Japan, JWPA, May 2010 in 2050 55,000 50,000 Off-shore (Floating) 45.000 Off-shore (Founding) 40,000 On-shore Installed [MM] 35,000 11.1GW 30,000 nstalled in 2020 25,000 20,000 15,000 This milestone should be 10,000 accelerated to 2030 from 2050. 5,000 0 2050|14 2000 2035 2005 2010 2015 2020 2025 2030 2040 2045 Fiscal Year

JWPA: Japan Wind Power Association

Feed In Tariff (FIT) in Japan

エネ庁HPに掲載された委員会資料より

電源 太陽光		易光 PV	風力 Wind		地熱 Geothermal		rmal	中小水力 Small			
調達区分		室区分	10kW以上	1OkW未満 (余剰買取)	20kW以上	20kW未 満	1.5万kW 以上	1.5万k W未満	1,000kW以上 30,000kW未 満	200kW 以上 1,000kW未満	Hydro
費用		建設費	32.5万円/kW	46.6万円/kW	30万円/kW	125万円 /kW	79万円/kW	123万円 /kW	85万円/kW	80万円/kW	100万円/kW
		運転維持費 (1年当たり)	10千円/kW	4.7千円/kW	6.0千円/kW		33千円/kW	48千円 /kW	9.5千円/kW	69千円/kW	75千円/kW
IRR		RR	税前6%	税前3.2% (* 1)	税前8%	税前1.8%	税前13%(*2) 税		税前7%	税前7%	
調達 価格 1kWi 当たり	格	Price	<u>42.00</u> 円	<u>42</u> 円 (*1)	23.10円	57.75 H	<u>27.30</u> =	42.00 H	<u>25.20</u> 円	<u>30.45</u> 円	35.70 H
		税抜	40円	42円	22円	55円	26円	40円	24円	29円	34円
F	Perio	od for	20年	10年	20年	20年	15年	15年	20年		
r	oayr	nent _								·	

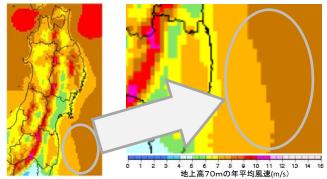
電源 バイオマス **Biomass** ガス化(下 ガス化 バイオマスの種類 固形燃料燃焼(未利 固形燃料燃焼(一 固形燃料燃 固形燃料燃 固形燃料燃焼 水汚泥) (家畜糞 用木材) 般木材) 焼(一般廃棄 焼(下水汚 (リサイクル木 尿) 物) 泥) 材) 建設費 392万円/kW 41万円/kW 41万円/kW 31万円/kW 35万円/kW 費用 運転維持費 184千円/kW 27千円/kW 27千円/kW 22千円/kW 27千円/kW (1年当たり) **IRR** 税前1% 税前8% 税前4% 税前4% 税前4% 【リサイクル 【メタン発酵ガス化 【未利用木材】 -般木材 (含 【廃棄物系 (木質以外) バ イオマス】 パーム椰子殻) 調達価格 1kWh当た Price 40.95 33.60 25.20 17.85 13.65 说抜 39円 32円 24円 17円 13円 Period for 20年 payment

METI Offshore Wind Energy Project, Fukushima (FY2011~15)

Floating offshore wind farm demonstration project (FY2011 3rd supplementary budget: 12.5 billion yen)

Contents of project

Summary / Purpose


- OAffected areas in the east, in particular, Fukushima, are recovering from the earthquake damage. These areas are expected to provide large scale job creation due to accumulation of industries focused on renewable energy.
- OThis project will clarify the safety, reliability and economic potential of floating offshore wind by demonstration and experiments of the world's largest level floating offshore wind power generation system off the coast of Fukushima prefecture.
- OAfter the completion of this project, This project is sought to make a new power generation business through the development of equipment as a result of this project.
 - By doing so, we aim to make a Japan a hub of wind power and contribute to the industrial revival in Fukushima

Conditions (applicant, subsidiary rate, etc.)

Image of project

- ODemonstration area: offshore of Fukushima Prefecture
- OSuch areas as well as a better wind conditions, are expected to take advantage of the former facilities of the offshore gas field, already being developed or currently in not use, offshore areas of Fukushima Prefecture are favorable.

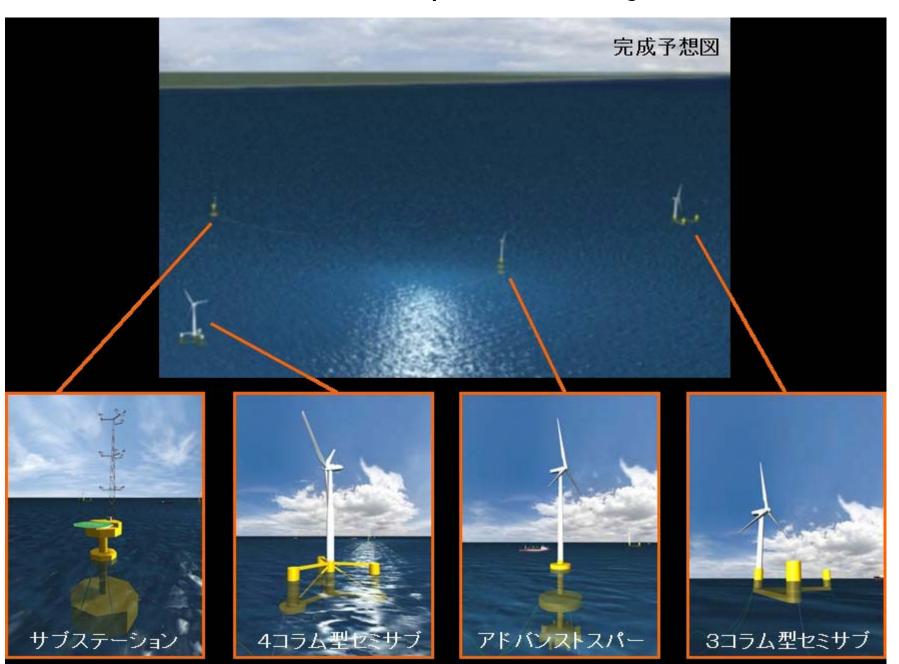
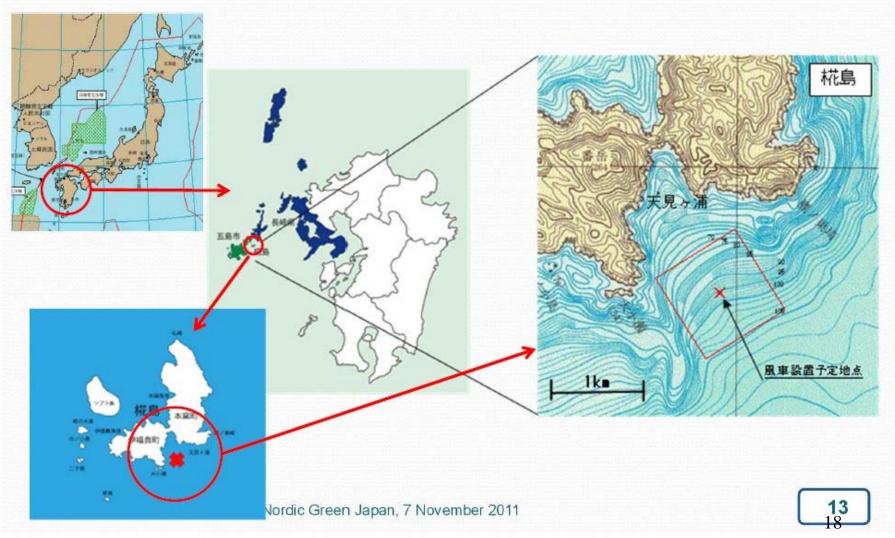
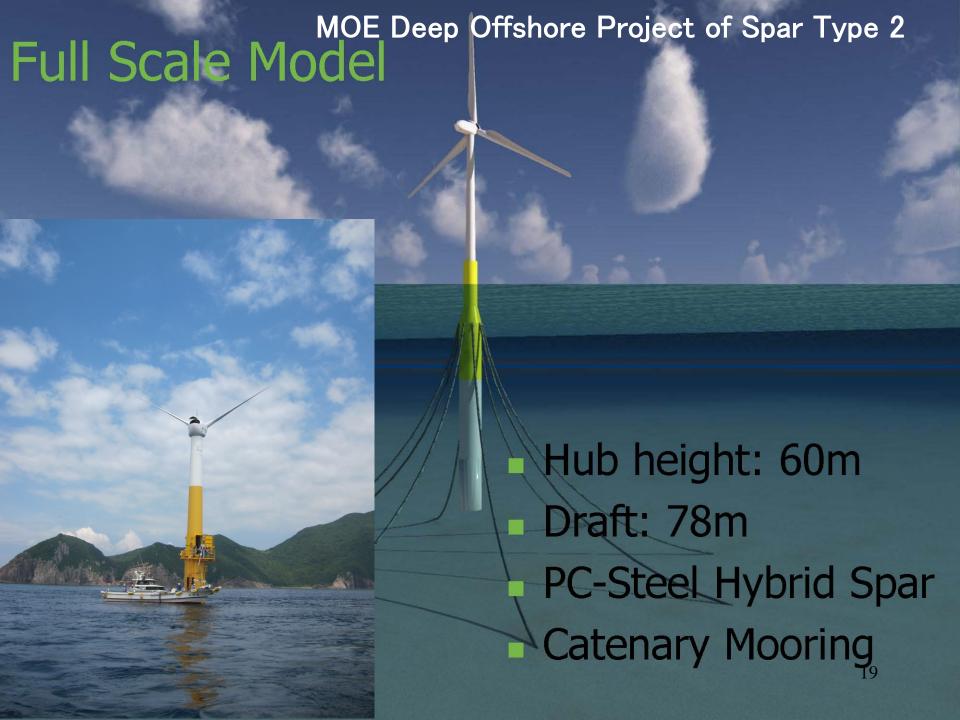

Demonstration assumed area

Image of floating offshore wind power (provision: MES, Tokyo Univ., TEPCO)

16


Schematic View of METI Deep Offshore Project, Fukushima

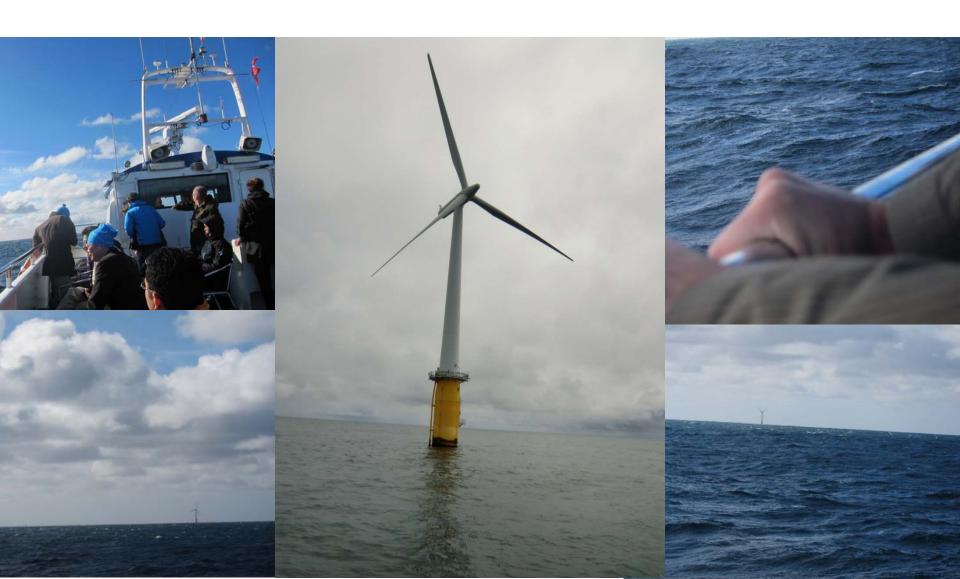

MOE Deep Offshore Project of Spar Type Government of Japan

Demonstration site - Kabashima Island

Source: MOE, Japan

National project of offshore wind in Cho-shi area By NEDO in October, 2012

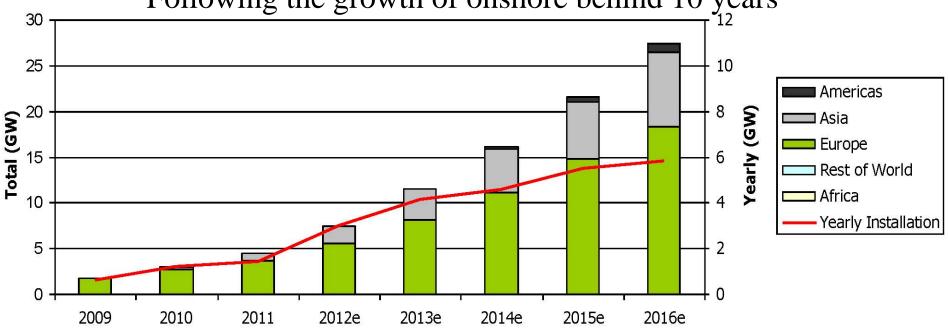
First Offshore Wind Farm in the World, 2000



Advanced Offshore Wind in the World

Hywind Project in Norway (2009)
Water depth 200m (120-700m), Float depth of 100m, Turbine of 2.4 MW

Tour to Norway to observe Hywind in last September

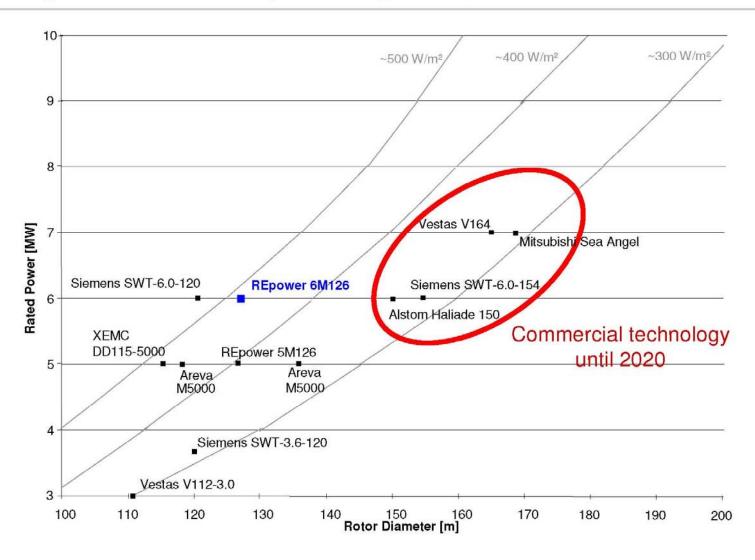


Huge global potential for offshore wind

5GW of total accumulation of offshore wind

More that 30% growth rate of year

Following the growth of onshore behind 10 years


Source: MAKE, Q3 2011 Market Outlook Update

Global Offshore Wind London 2013 より

Turbine Development- WTG manufacturers will match the goal to reduce COE by increasing the output

Concluding Remarks

- Roadmap is discussed for wind power with estimation of potential for wind power.
- FIT is expected to work well to develop wind power.
- Primary grid connection of wind power is important with the electric power company using the connections with other areas.
- Offshore wind power has large potential due to the huge area of ocean around Japanese island of EEZ 6th.
- Deep offshore system will be a key technology for future development of wind power and recovery from the disaster.
- Fisherman's right will be reasonably taken into account for cooperating with developer instead of compensation.