

# Hydrothermal pretreatment of biomass for ethanol fermentation

Yukihiko Matsumura Hiroshima University

Dec. 10-12, 2012

JAPANESE-DANISH JOINT WORKSHOP "Future Green Technology"

Hakata, Japan

## First and second generation ethanol



#### **First generation**

- Sugar, Starch, grain
- Easy fermentation to bioethanol
- High price raw material
- Competition with foods



Mood - corn stover - straw

#### **Second generation**

- Lignocellulosic residues (wood, straw) and other agricultural residues
- Advanced technology is needed

## Saccharification of lignocellulosics



## Various pretreatment for saccharification

| Pretreatment               | Concept                                                                                                        | Disadvantage                                                                      | Author (year)<br>Previous study |
|----------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------|
| Concentrated sulfuric acid | Promote hydrolysis with concentrated sulfuric acid                                                             | <ul><li>Decomposition of glucose by acid</li><li>High cost to use acids</li></ul> | Gupta R et al.<br>(2009)        |
| Dilute sulfuric acid       | Promote hydrolysis with dilute sulfuric acid                                                                   | <ul><li>High cost to treat<br/>byproducts</li><li>Reactor corrosion</li></ul>     | Root et al. (1959)              |
| Steam explosion            | After heating up in steam, suddenly reduce the pressure                                                        | -Low glucose yield                                                                | DeLong (1981)                   |
| Pulverization              | Decrease the crystallinity of cellulose                                                                        | <ul> <li>Large amount of energy<br/>needed.</li> </ul>                            | Sidiras and Koukios<br>(1989)   |
| Hydrothermal               | Hemicellulose is dissolved in water by high temperature and pressure. Reduction of crystallinity of cellulose. | -Low cost -Low glucose yield                                                      | Mok and Antal<br>(1994)         |

#### Inhibitor byproducts for fermentation



#### **Fermentation inhibitors**

#### **Yeast** Saccharomyces cerevisiae

Aerobic Cell growth

Anaerobic Cell growth

Ethanol fermentation



Fermentation inhibitors are produced during hydrothermal pretreatment, which affects the activities of the yeast

Inhibitors Formic acid, Acetic acid, Furfural, 5-HMF

#### **Purpose**

To commercialize the process, reaction characteristics as well as inhibitor effect should be clarified.

but...

This evaluation has not been reported so far.



#### Purpose of this study

The purpose of this study is to determine the reaction characteristics and inhibitor effect quantitatively.

#### Experimental for hydrothermal pretreatment





**Autoclave reactor** 

#### **Enzymatic hydrolysis**

Reactant 1 g

Buffer fluid 60 mL

10 g/L cellulase solution 5 mL

The working volume of the pretreatment vessel was 96 mL. The pretreatment agitator was set at 500 rpm.

## Cellulase from *Aspergillus niger* powder, ≥0.3 units/mg solid

The flasks were shaken at 250 rpm at 37 C HPLC with SUGAR K S-802(Shodex) column operated at 60 ° C with 0.8mL/min flow of water as an eluate. The detector was a refractive index

#### **Experimental conditions**

| Temperature        | 130, 150, 170, 190, 200, 210, 240, 260 and 280 °C |
|--------------------|---------------------------------------------------|
| Rubber wood powder | 7 g                                               |
| De-ionized water   | 63 g                                              |



Temperature history for different target temperatures.

#### **Feedstock**





# Rubber wood residue

37% of market share export of the world are from Thailand

#### CHEMICAL CHARCTERISTICS OF RUBBER WOOD RESIDUE

| Composition    | 0/0 |
|----------------|-----|
| hemicelluloses | 29  |
| lignin         | 28  |
| cellulose      | 39  |
| ash            | 4   |

•United States Department of Agriculture, "Forage fiber analyses (Apparatus, reagents, procedures, and some applications)", Agriculture Handbook, 379 (1970)

#### **Products and saccharification**







Time dependence of amount of glucose generated from solid residue treated temperature 130–280°C, 10 wt% of concentration of raw material, treatment time 0 min. (HC denote the solid sample from hydrothermal pretreatment used with enzymatic hydrolysis)

The samples after hydrothermal pretreatment at temperature on 130 (A), 140 (B), 150 (C), 170 (D), and 190° C (E)

#### **Reaction modeling**





| С  | Cellulose                                            |
|----|------------------------------------------------------|
| C* | Cellulose hydrolyzed by cellulase after pretreatment |
| G  | Glucose                                              |
| D  | Decomposition products of glucose                    |

#### Reaction rate parameters

$$\frac{d[C]}{dt} = -k_1[C] - k_2[C]$$

$$\frac{d[C^*]}{dt} = k_1[C] - k_3[C^*]$$

$$\frac{d[G]}{dt} = k_3[C^*] + k_2[C] - k_4[G]$$

$$\frac{d[D]}{dt} = k_4[G]$$

#### **Reaction rate parameters**



|       | Preexponential factor [1/s] | Activation energy [kJ/mol] |
|-------|-----------------------------|----------------------------|
|       |                             |                            |
| $k_1$ | $1.87 \times 10^5$          | 62.0                       |
| $k_2$ | $2.02 \times 10^7$          | 87.7                       |
| $k_3$ | $1.80 \times 10^{18}$       | 222.2                      |
| $k_4$ | $2.88 \times 10^{2}$        | 14.4                       |

#### Comparison with other feedstocks



## **Conclusions (reaction characteristics)**

Model for the reactions in hydrothermal pretreatment reactor was proposed.

The reaction parameter in the hydrothermal reactor for rubber wood was successfully decided.

Reaction characteristics differs from feedstock to feedstock.

## Experiment for inhibitor effect clarification



#### **Experimental conditions**

| Yeast                   | S. cerevisiae * |
|-------------------------|-----------------|
| YPD medium (5.0 wt%)    | 10 mL           |
| Preculture              | 0.2 mL          |
| Inhibitor concentration |                 |
| Formic acid             | 0-45 mM         |
| Acetic acid,            | 0-45 mM         |
| Furfural                | 0-45 mM         |
| 5-HMF                   | 0-15 mM         |

\*Sigma-Aldrich (Type II)

36 h

30 °C

**Measuring time** 

**Incubation temperature** 

## Cell growth model

$$\frac{dX}{dt} = \mu X$$

$$\frac{dS}{dt} = -k \frac{dX}{dt}$$
(Monod equation)
(Monod equation)
$$\frac{dS}{dt} = -k \frac{dX}{dt}$$
(Monod equation)
$$\frac{dS}{dt} = -k \frac{dX}{dt}$$
(1) Lag phase (2) Exponential growth phase

- (3) Resting phase

$$(t-\tau) = \frac{1}{\mu_{\max}} \left\{ (1 + \frac{K}{kXo + So}) \ln\left(\frac{X}{Xo}\right) - \frac{K}{kXo + So} \ln\left|1 + \frac{k}{So}(Xo - X)\right| \right\}$$

X: Cell concentration

**X**<sub>O</sub>: Initial Cell concentration

S: Culture medium concentration

**S**<sub>o</sub>: Initial culture medium concentration

t: Incubation time

18

μ<sub>max</sub>: Maximum growth rate

K: Half medium concentration rate

τ: Lag phase time

## Inhibitor effect on cell growth





Formic acid

**Acetic acid** 

#### Inhibitor effect on cell growth



#### Monod parameter change by inhigibors



#### Inhibitor effect on ethanol fermentation

|         | 0 mM | 15 mM | 30 mM | 45 mM |
|---------|------|-------|-------|-------|
| Ethanol | -    | -     |       | -     |
| Glucose |      |       |       |       |



#### Inhibitor effect on ethanol fermentation

| Furfural | 0 mM     | 15 mM | 30 mM | 45 mM |
|----------|----------|-------|-------|-------|
| 5-HMF    | 0 mM     | 5 mM  | 10 mM | 15 mM |
| Ethanol  | <b>—</b> |       |       | -     |
| Glucose  |          |       |       |       |



## **Conclusions (inhibitor effect)**

- The inhibitors used in this study slows cell growth and final yeast concentration. Effect on parameters were observed ( $\mu_{max}$ , k,  $\tau$ ).
- The inhibitors used in this study except acetic acid decreases glucose consumption rate and ethanol production rate for ethanol fermentation.
- Acetic acid affects cell growth but does not affect ethanol production.

## **Acknowledgment**

This study was supported by the following funds.

Ministry of Education

#### Collaborating bodies

Tawatchai Charinpanitkul (Chulalongkorn University)

#### Staffs and Students

Takuya Yoshida, Machi Kanna, Takashi Yanagida Phacharakamol Petchpradab Yuta Fukutomi

## Thank you!!



See you at the European Biomass Conf. and Exhibition, 3-7 June 2013 Bella Center - Copenhagen, Denmark