JAPANESE-DANISH JOINT WORKSHOP FUTURE GREEN TECHNOLOGY December 10&11, 2012 Hakata, Japan

WOODY BIOMASS UTILIZATION IN JAPAN

Shinya Yokoyama

Tottori University of Environmental Studies

RENEWABLE ENERGY IN POWER GENERATION MIX 2009

FOREST IN JAPAN

Land Area of Japan : 36.47 Mha

- * 2/3 of forest : artificial forest
- * 1/3 of forests : natural forests
- * Annual productivity of forset:
 - 70 M to 100M $m^{\scriptscriptstyle 3}$

REVITALIZATION OF FORESTRY AND BIOMASS UTILIZATION

The Forestry Agency of MAFF has proposed "Forest and Forestry Revaitalization Plan" in order to raise the self-sufficiency rate from 24% to 50% within 10 years.

Maintenance of forest road, utilization of forest resources, and system reform and review of budget are important to achieve the target.

Power generation by wood combustion will be economically beneficial in accordance with FIT which will be put into force.

POTENTIAL AND AVAILABILITY OF BIOMASS IN JAPAN

Item	Potential MCton	%	Availability MCton	
Animal waste	5.25	25	1.31	
Sewage sludge	0. 90 21		0.19	
Black liquor	4.66 100		4.66	
Paper	10.34	5	0.52	
Food waste	0.80	26	0. 21	
Sawmill waste	1.70	60	1.02	
Construction waste	1.81	47	0.85	
Agri waste	4.98	15	0.75	
Forest waste	4.00	30	1.20	
Enegy crop	0.40	100	0.40	
Total	34.84		11.11	

The total energy of maximum available biomass is 460PJ/y.

* If this amount of biomass is converted to electricity, it becomes equivalent to 13 billion kWh/y (2.8 M households)

•If this amount of biomass is converted to bioethanol, it can provide 11.8 M kl/y.

* In these cases, GHG reduction will be about 40 Mt-CO₂/year. (3.2% of annual CO₂ emission)

BIOMASS ENERGY CONVERSION TECHNOLOGY

OVERVIEW OF ETHANOL PRODUCTION PROCESSES

2nd generation bioethanol

BIOETHANOL PILOT PLANT

NEDO Project: Oji Paper Co., Ltd., Nippon Steel & Sumikin Engineering, AIST

Starting material: woody biomass: *eucalyptus*

Pretreatment: mechanochemical process

Saccharification: commercial enzyme

Fermentation: C6 & C5

Distillation: new technology

Capacity: 200 L/day

ENERGY UTILIZATION OF WOODY BIOMASS AND PLANT SIZE

	Scale and energy use						
Biomass	1t/day 10t/da		ay 100	100t/day		day 1000t/day	
Forestry biomass logging residue		Pellet chip		Abroad –			
Industrial waste sawdust•bark				Direct fired power generation and heat utilization		Direct fired power generation and heat utilization	
Demolition timebr	 		Power by ga	generatic sification	on]	
Energy use	<u>Sr</u> Pellet s Pellet Power by gas	nall scale stove (chip) boile generation ification	r Di	Medium ~ Large scale Direct fired power generation…plant use, selling Direct fired heat utilization …timber drying, plant heat source, heating/cooling, cocombustion with coal			

TYPE AND CHARACTERITICS OF GASIFIER

Typo	Fixed		Eluidizad	Entrained	Rotary kiln	
Down draft Updr		Updraft	Fiuluizeu	Entrameu		
Image	GA GA gas	biomas gas	gas biomass fluidized bed carrier GA	biomass GA	biomass rotation gas	
Feedstock	chip, block	chip,block	chip, block	powder	chip, block	
Temperature	700∼1100℃	700∼900°C	650∼900°C	800~1000°C	700∼1000°C	
Remarks	 small scale small amount of tar power generation 	•small scale • tar •power generation	 big scale tar power generation liquid fuel bubbling, circulating 	 •medium, large scale • small amount of tar • easy change of composition •liquid fuel •power generation 	•small, medium scale •tar, reduced by after treat- ment •power generation	

EXAMPLES OF ENERGY CONVERSION OF WOOD

DIRECT COMBUSTION FOR THERMAL USE :	162
DIRECT COMBUSTION (INCLUDING COGENERATION) :	111
GASIFICATION :	29
PELLET PRODUCTION :	126
LIQUID PRODUCTION :	3
SOLID FUEL PRODUCTION :	10
BIOETHANOL PRODUCTION :	3
CO-COMBUSTION	11
WOOD + FOOD WASTE COMBUSTION	3

FIT SYSTEM FOR BIOMASS

		\M/aad	Construction	Instruction Methane		Solid fuel	
	Unused wood	vvood	waste	sludge dung		MSW	sludge
Construction cost	¥410,000/kW	¥410,000/kW	¥350,000/kW	¥3,920,000/kW		¥310,000/kW	
Running cost	¥27,000/kW	¥27,000/kW	¥27,000/kW	¥184,000/kW		¥22,000/kW	
IRR	8%	4%	4%	1%		4%	
FIT/kWh *2)	¥33.60	¥25.20	¥13.65	¥40.95		¥17.65	
FIT/kWh *3)	¥32	¥24	¥13	¥39		¥17	
Term 20 years							
*1) running cost per annum, *2) including tax, *3) excluding tax							

SUMMARY

* In Japan, the potential of woody biomass is about 1.6 million tons (on C basis) depending on the rate of thinning.

* The woody biomass is used for thermal use as well as power generation by direct combustion.

* A technology of second-generation biofuel seems premature and it will take some time to commercialize.

* It is not easy to collect woody biomass in a large quantity, so power generation by gasification is important. It is highly desirable to construct compact and efficient gasfiers at a reasonable cost.

* FIT system has been introduced to enhance the introduction of renewable energy. For woody biomass, FIT is different in the origin of the starting materials; green biomass, biomass, and waste wood.

* There are many arguments and criticism that FIT is too high due to the lack of transparency in the process of price decision or reasonable cost estimation.

* It is expected, however, that utilization of woody biomass will be progressed by reviewing and revising FIT.

Thank you very much

yokoyama@kankyo-u.ac.jp

BOTTOLENECK TO BE SOLVED FOR THE

PRODUCTION OF 2nd GENERATION BIOETHANOL

- * Separation of holocellulose from lignin
- Saccharification of holocellulose by enzyme
 High efficiency, high selectivity, recycle of enzyme, anti-stress, lowcost production
- * Sophisticated utilization of lignin aromatic chemicals
- * Efficient utilization of by-products DDGs, CO₂
- * Wastewater treatment technology

GHG EMISSION OF BIOETHANOL (LCA)

Source: Agency of Natural Resources and Energy, METI