

VTT Technologies for health – tools for future personalized, pre-empitive and predictive health care

Harri Siitari, Ph.D Senior Chief Scientist, Programme director December, 13. 2011

Japanese-Finnish joint symposium ICT and Technology in Medical and Health Research

VTT Technical Research Centre of Finland

- Turnover 292 M€
- Personnel 3,167

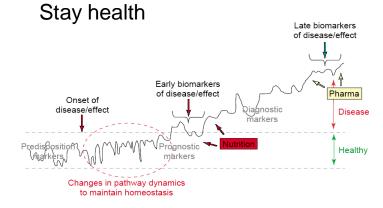
Customer sectors

- Biotechnology, pharmaceutical and food industries
- Electronics
- Energy
- ICT
- Real estate and construction
- Machines and vehicles
- Services and logistics
- Forest industry
- Process industry and environment

Focus areas of research

- Applied materials
- Bio- and chemical processes
- Energy
- Information and communication technologies
- Industrial systems management
- Microtechnologies and electronics
- Services and the built environment
- Business research

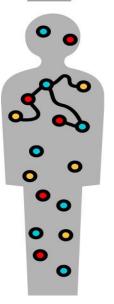
A globally networked multi-technological applied research organisation with extensive cross-disciplinary technological and business expertise



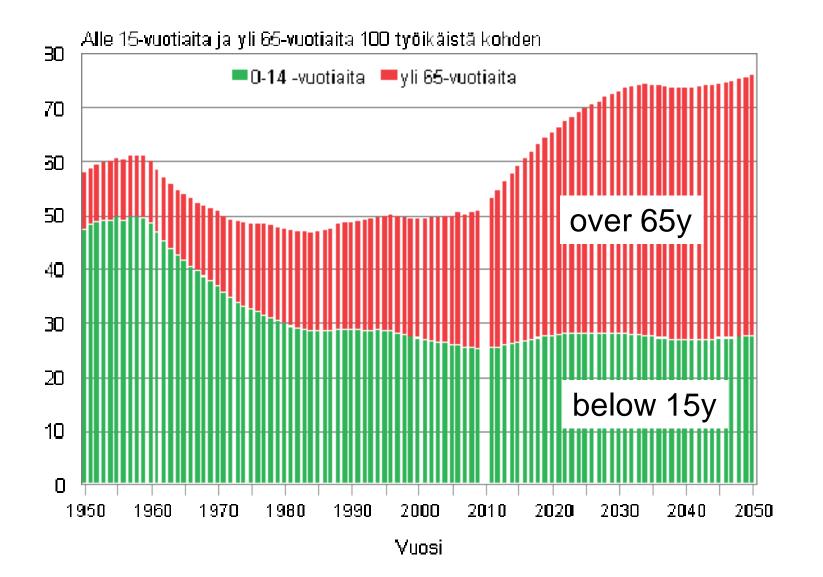
VTT on map

Future health care? Goals for predictive, preventive and participatory HC

Disease management Living at home

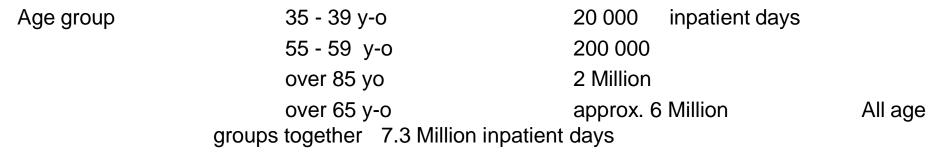


DISEASED



Cost efficient Processes in Health care

Right drug Right disease Right time

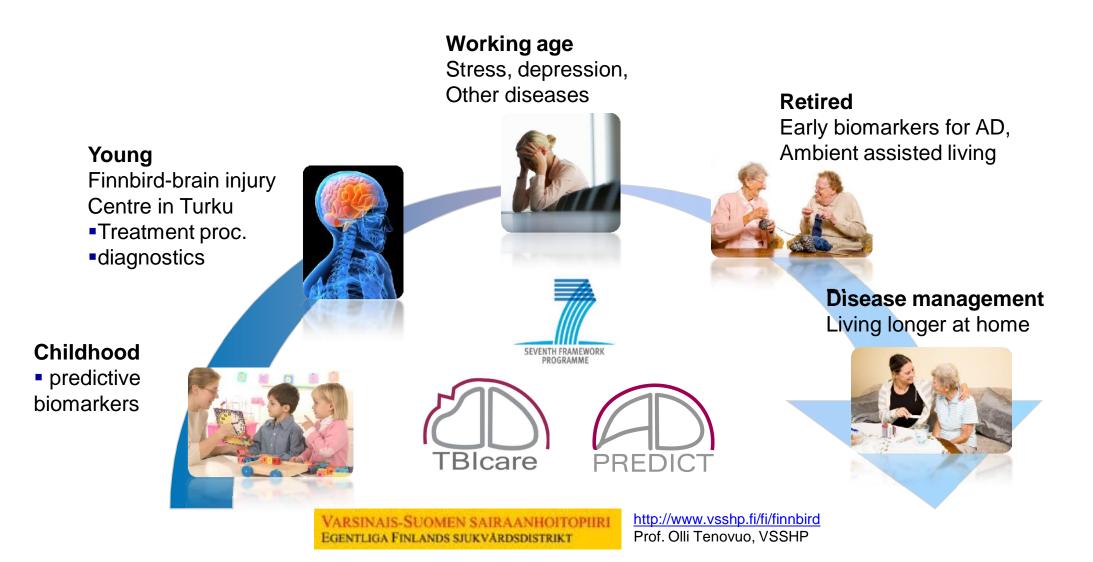


Future age distribution in Finland

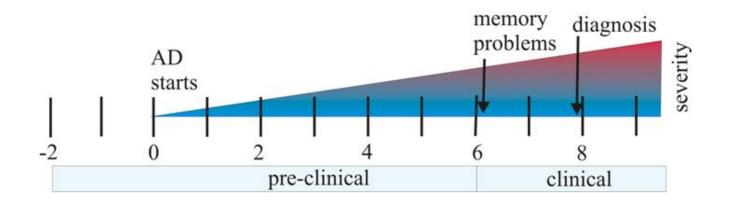
Finland - Resource usage I; primary health care

Measured as inpatient hospital days

-> Resource usage strongly increasing with age

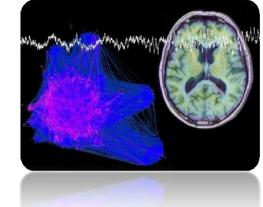

Diagnosis groups requiring most inpatient hospital days (as inpatient days):

Cardiovascular diseases	1 800 000				
 Psychiatric disorders (dementia) 	2 000 000 (<mark>1.6 M</mark>)				
 Malignancies 	306 000				
 Musculoskeletal diseases 	278 000				
 Gastrointestinal system diseases 	139 000				
 Neurological disorders (Alzheimer) 	856 000 (<mark>453 000</mark>)				
 Injuries 	596 000				
total inpatient hospital days: 7.3 milj					


Key research area 1: Life span strategy in Brain and cognition

Motivation - Alzheimer's Disease

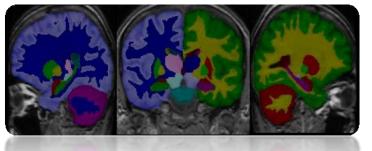
- Alzheimer's disease is a progressive neurodegenerative disease.
- Alzheimer's disease will be one of the main health issues of the next decades:
 - costs are 1 % of the gross-domestic product (GDP) of the whole world, and
 - 27 million people (2006) -> 114 million (2050).
- Delaying both the onset and progression only by modest one year would reduce the number of Alzheimer's cases by 10 %.
- Current medical problems:
 - no effective medication but new drugs under development, and
 - no objective and efficient early diagnostics.



ICT-based solutions for diagnostics?

 In healthcare domain, huge amounts of data are acquired from patients: various databases contain hidden information about variability of humans that could be utilized in diagnostics.

- **data quantification** is difficult, e.g., automated image segmentation tools are rare in clinical practice,
- there are no solutions for integrating heterogeneous data (holistic view) although 85 % of clinicians would like to have, and
- diagnostics should be performed at very early stage for successful treatments – a need for pre-clinical screening.



19/01/2012

Image quantification - Brain

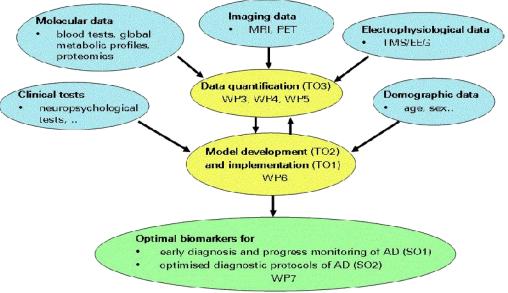
- VTT has developed a new VolumeWarp solution to image segmentation:
 - only 2 minutes in a standard laptop,
 - accuracy comparable to manual segmentation (gold standard)
 - licensed already to one global player, discussions going on with three other companies.
- Other solutions for tensor-based morphometry, manifold learning, and atrophy measurements.

	Similarity	Correlation of
HIPPOCAMPUS FROM MRI	index	volumes
VolumeWarp (N=340)	0.87	0.94
Manual segmentation (inter-rater):		
Morra, NeuroImage, 2009 (N=21)	0.85	0.71
van der Lijn, Neurolmage, 2008 (N=20)	0.86	0.83
Niemann, Psych. Res, 2000 (N=20)	-	0.93

Lötjönen: Neurolmage, 2010 & 2011 Koikkalainen: Neurolmage, 2011

10

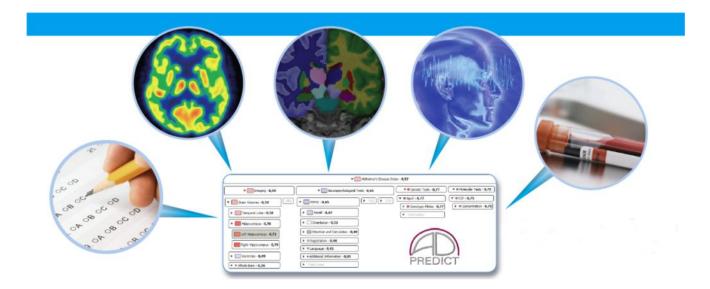
19/01/2012


VTT & Alzheimer's Disease

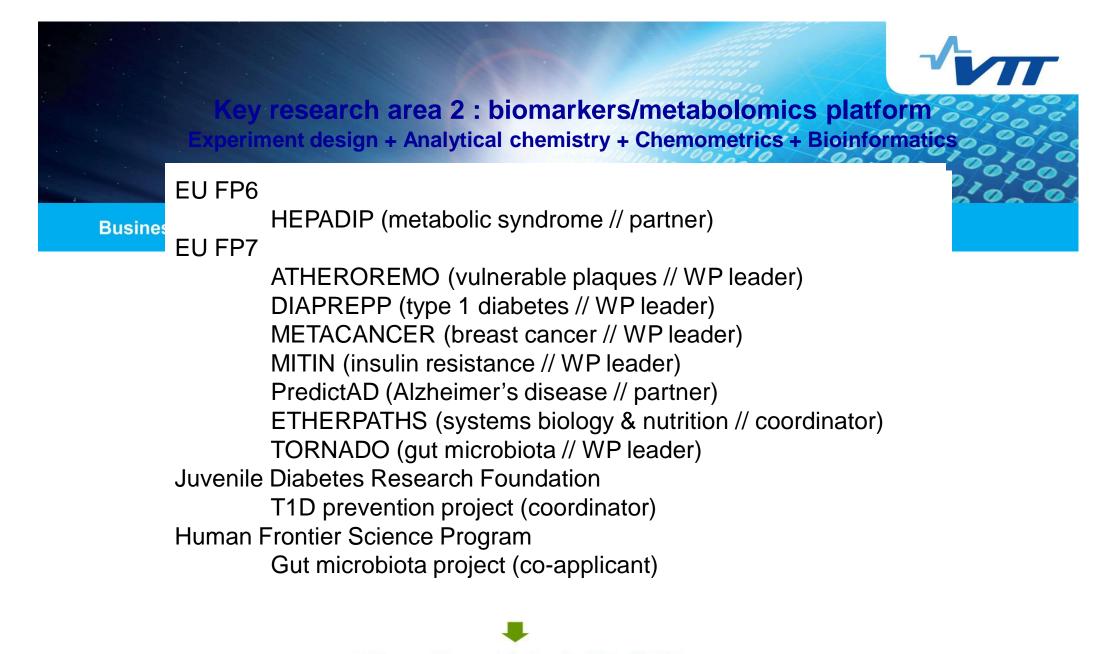
- VTT has diverse **offering** in the scope of Alzheimer's disease:
 - **image quantification tools** (segmentation, multi-template tensor-based morphometry),
 - metabolomic biomarkers from blood, and
 - **decision support solution** for integrating heterogeneous patient data and for providing evidence based objective index of the state of the patient.
- Solutions developed in an EU funded research project of eight partners: PredictAD (www.predictad.eu).

European Commission Information Society and Media

12


TBIcare - Concept LICS/ÅBO YLIOPISTOLLINEN UNIVERSITETS-KESKUSSAIRAALA CENTRALSJUKHUS imagination at work UNIVERSITY OF CAMBRIDGE Imperial College London Complexio AUNAS UNIVERSITY OF TECHNOLOGY framework for

Expected results:


- a strictly evidence based software solution for diagnostics and treatment planning,
- new biomarkers and their combinations for TBI,
- datamining-based statistical fusing highly heterogenous data, and
- new efficient data quantification tools.
- software tools for clinicians use

Biomarkers from imaging and blood samples

Biomarkers, biological insight

Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes

Matej Orešič,¹ Satu Simell,² Marko Sysi-Aho,¹ Kirsti Näntö-Salonen,² Tuulikki Seppänen-Laakso,¹ Vilhelmiina Parikka,² Mikko Katajamaa,¹ Anne Hekkala,⁴ Ismo Mattila,¹ Päivi Keskinen,⁵ Laxman Yetukuri,¹ Arja Reinikainen,⁶ Jyrki Lähde,⁵ Tapani Suortti,¹ Jari Hakalax,² Tuula Simell,² Heikki Hyöty,^{7,8} Riitta Veijola,⁴ Jorma Ilonen,^{3,9} Riitta Lahesmaa,⁶ Mikael Knip,^{5,10} and Olli Simell²

¹VTT Technical Research Centre of Finland, Espoo FI-02044, Finland
 ²Department of Pediatrics and ³Immunogenetics Laboratory, University of Turku, Turku FI-20520, Finland
 ⁴Department of Pediatrics, University of Oulu, Oulu FI-90014, Finland
 ⁵Department of Pediatrics, Tampere University Hospital, Tampere FI-33521, Finland
 ⁶Turku Centre for Biotechnology, Turku FI-20521, Finland
 ⁷Department of Virology, University of Tampere, Tampere FI-33520, Finland
 ⁸Centre for Laboratory Medicine, University Hospital of Tampere, Tampere FI-33520, Finland
 ⁹Department of Clinical Microbiology, University of Kuopio, FI-70211 Kuopio, Finland
 ¹⁰Hospital for Children and Adolescents, University of Helsinki, Helsinki FI-00014, Finland

J. Exp. Med. (2008)

This sort of metabolomic approach to T1D natural history may be a pioneering example of environmental data-driven approaches.

From commentary about our T1D study by P. Bougnères & A.-J. Valleron J. Exp. Med. (2008)

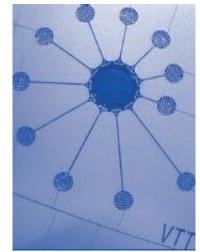
Key research area 2: Diagnostics

Understanding diagnostics needs

- Biomarker search
- Marker genes
- Microbes
- Lipids
- Antigens

- Antibody development
- Probes and primers
- Large-scale production
- of reagents

Assay development

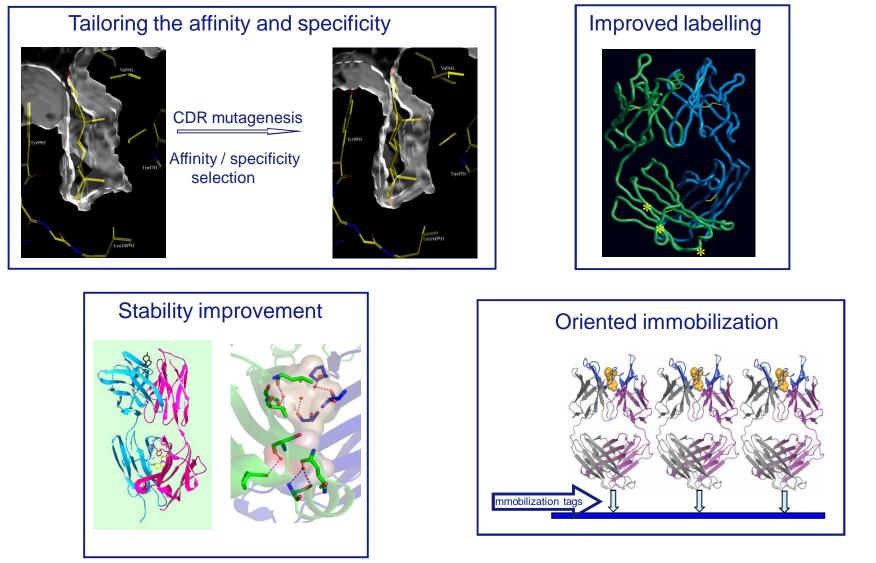


- HTtranscription profiling
- Immunoassays
- Microbial population profil.
- Metabolomics
- Multiplexed detection

Device development for point-of-care applications

16

19/01/2012



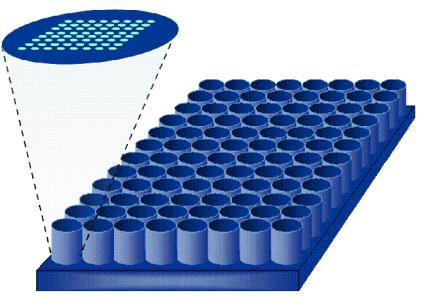
- Portable detectors
- Microfluidics
- Roll-to-roll printing
- Label free detection
- Capillary electrophoresis
- Wireless data processing
 and transfer

By integrating VTT's know-how on biotechnology, electronics, material sciences and ICT new innovative bioanalytical and diagnostic platforms are developed

Antibody engineering possibilities



His tag, protein- and peptide tags, Cys-tag, tag for biotinylation


Arrays-in-Wells for Multiplexed Bioassays

Array types

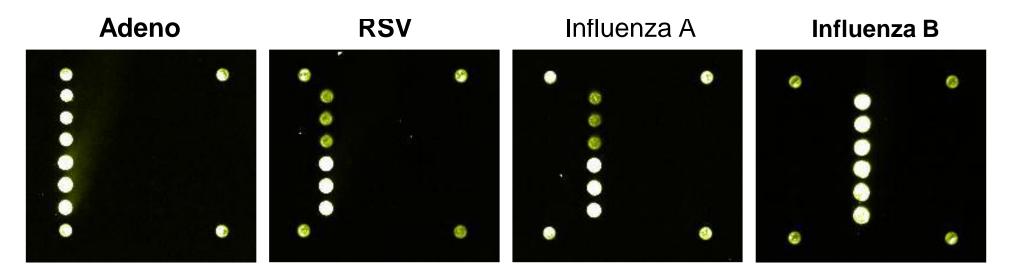
- Oligonucle
 otide
- Antibody
- Antigens
- Allergens

- Microarrays in 96-well plates
- Compatible with standard lab equipment
- Simple Assays Multiple Results

Applications

- Rapid viral diagnostics
- Analyte panels
 e.g. CVD
- Pathogen diagnostics
- Autoimmune
 disease
- Allergy
- Genotyping

Dr. Petri Saviranta, VTT Liisa Hattara, VTT

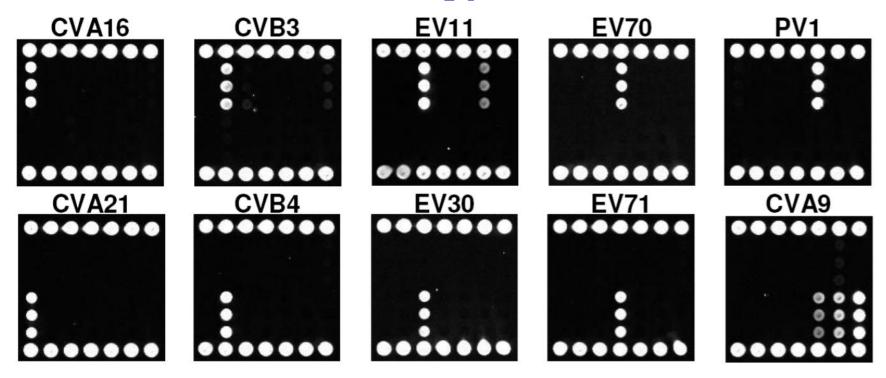

VTT MEDICAL BIOTECHNOLOGY / BIOCHIP

Assay Logistics Sample **Buffer** 25 µl 25 µl **Readout:** - Optical scan (fluorescence) - Automated image analysis - Shake 15 min - Quantification spot signals - Wash - Data analysis - Dry => <u>Result</u>

VTT TECHNICAL RESEARCH

Control samples

20



	Adeno	RSV	Inf A	Inf B	PIV1	PIV2	PIV3	neg	Total
Routine assay	16	33	0	4	2	0	2	521	578
Arrays- in-wells	16	33	0	4	3	1	1	520	578

21

Clear discrimination between serotypes

JOURNAL OF CLINICAL MICROBIOLOGY, June 2009, p. 1863–1870 0095-1137/09/\$08.00+0 doi:10.1128/JCM.02226-08 Copyright © 2009, American Society for Microbiology. All Rights Reserved. Vol. 47, No. 6

Typing of Enteroviruses by Use of Microwell Oligonucleotide Arrays[∇][†] P. Susi,¹ L. Hattara,² M. Waris,¹ T. Luoma-aho,² H. Siitari,² T. Hyypiä,¹ and P. Saviranta^{2*} Department of Virology, University of Turku, Kiinamyllynkatu 13,¹ and Medical Biotechnology Centre, VTT Technical Research Centre of Finland, Itäinen Pitkäkatu 4C,² 20520 Turku, Finland

Business from technology

Arrays-in-Wells for Multiplexed Bioassays

Microarrays in 8-well strips Compatible with standard lab equipment Simple Assays – Multiple Results

Array types

- Oligonucleotide
- Antibody
- Antigens
- · Allergens

Applications

- Rapid viral diagnostics
- Analyte panels for e.g. cardivascular Diseases
- Pathogen diagnostics
- Autoimmune disease
- Allergy
- · Genotyping
- Diagnostics for animal diseases, food borne pathogens and environment

Arrays-In-Wells Reader Features

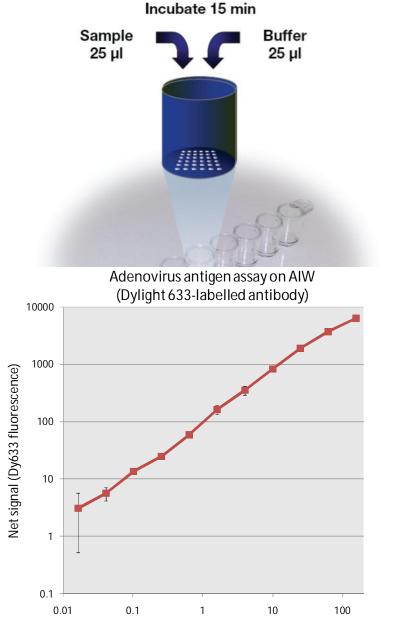
- · Easy to use
- Portable, compact size (90 x 170 x 250 mm)
- Quantitative analysis
- Compatible with standard 8-well microtiter strips
- · Fast, measurement and analysis of 8-well strip in 60 seconds
- Powerful laser excitation
- · High efficiency imaging of the emission

Additional information

Harri Siitari Programme Manager Tel. +358 20 722 2832 harri.siitari@vtt.f Markku Känsäkoski Customer manager Tel. +358 20 722 2290 markku kansakoski@vtt.fi

VTT TECHNICAL RESEARCH CENTRE OF FINLAND www.vtt.fi

Technology and market foresight • Strategic research • Product and service development • IPR and licensing • Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership


Rapid diagnostics of respiratory viruses

19/01/2012

22

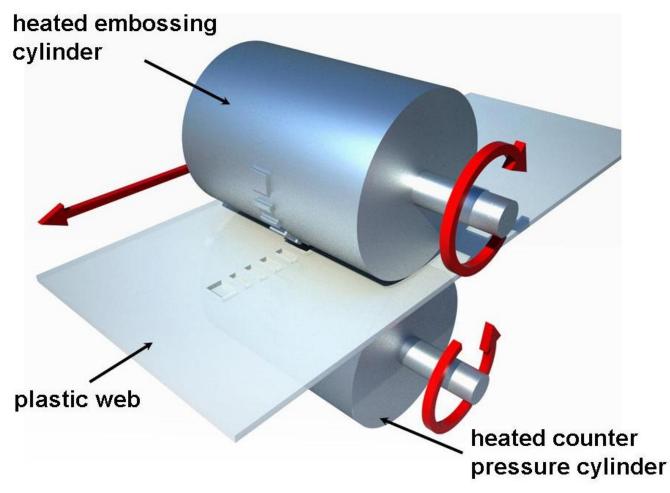
[Adeno Hexon Protein] (ng/ml)

Pioneering R2R pilot manufacturing machinery for printed electronics and intelligence

Fig 7: PICO 3 printing unit pilot line, 2003

- units: gravure, hot-embossing, lamination
- web width: 20 cm
- web speeds: 0.5-100 m/min

Fig 8: ROKO 4 printing unit pilot line, 2007


- units: gravure, reverse gravure, flexo, rotary screen, lamination (printing units in register)
- web width: 30 cm
- web speed: 10 m/min max

24

√∨*π*

Roll-to-Roll (R2R) hot-embossing principle

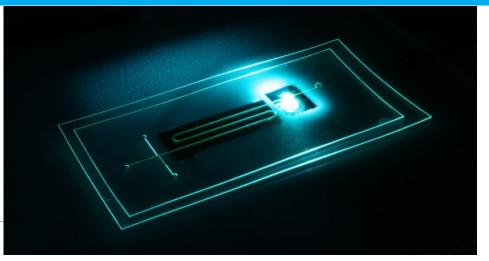
Advantages over

static hot embossing:

- rotating stamp cylinder enables continuous chip manufacturing (parallel and continuous)
- uniform chip quality
- large area embossings possible
- integration of other roll-to-roll processes in production line (e.g. printing of biomarkers, lamination, online quality control)

Schematic model of roll-to-roll (R2R) hot-embossing process.

25



Examples of our current activities

Lab on a Chip

Cite this: DOI: 10.1039/c0xx00000x

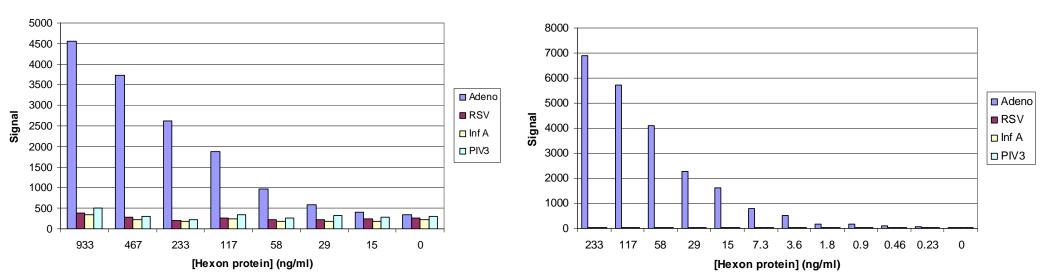
www.rsc.org/loc

Disposable roll-to-roll hot embossed electrophoresis chip for detection of antibiotic resistance gene *mecA* **in bacteria**

Ralph Liedert,^{*a} Lotta K. Amundsen,^{*b} Ari Hokkanen,^b Minna Mäki,^c Anne Aittakorpi, ^c Mikko Pakanen,^b James R. Scherer,^d Richard A. Mathies,^d Marika Kurkinen,^a Sanna Uusitalo,^a Leena ⁵ Hakalahti,^aTarja K. Nevanen,^b Harri Siitari,^e and Hans Söderlund^b

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

We present a high-throughput roll-to-roll (R2R) manufacturing process for foil-based polymethyl methacrylate (PMMA) chips of excellent optical quality. These disposable, R2R hot embossed ¹⁰ microfluidic chips are used for the identification of the antibiotic resistance gene *mecA* in *Staphylococcus epidermidis.* R2R hot embossing is an emerging manufacturing technology for polymer microfluidic devices. It is based on continuous feeding of a thermoplastic foil through a pressurized area between a heated embossing cylinder and a blank counter cylinder. Although mass fabrication of foil-based microfluidic chips and their use for biological applications was


15 foreseen already some years ago, no such studies have been published previously.

26

Analysis of Adeno Hexon Protein with Arrays-inchannels vs Arrays-in-wells

- Common dilution series was made for AIC and AIW:
- Two-fold dilution series starting from 933 ng/ml
- Dilutions from 933 down to 15 ng/ml were analyzed with AIC
- Dilutions from 233 down to 0.23 ng/ml were analyzed with AIW

AIC, 200 µm channels

AIW

Key research area 3: Personal Health Systems

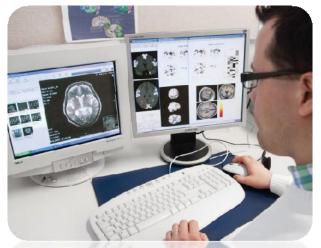
Advanced analysis tools and psychophysiological models - from data to information and feedback

+ New service models+ New delivery and business models+ New peer and social networks

Easy, available, affordable, efficient, personalised, trusted, standard-based, interoperable, citizen-driven

Vivago IST: ACTIVITY RECOGNITION WITH MOVEMENT SENSORS

- An intelligent wearable social alarm system for elderly
- Enables cost efficient continuous 24/7 monitoring of wellness of the subject
- Reliable user-triggered and automatic alarms for emergency


29

Conclusions

• VTT has developed and validated state-of-the-art scientific methods for the diagnostics of AD but tools are **applicable also in other domains**.

VTT diagnostics for multiple biomarkers :

• the disease state fingerprint provides a **holistic view of the status** of the patient and allows both **diagnostics** and the **follow-up of treatment efficacy** quantitatively based on the principles of evidence-based medicine,

• the disease state fingerprint profiling technology has potential in **personalized medicine:** to match patients for clinical studies and for treatments.

• Recombinant antibody development with **low-cost multiplexed technologies** provides platforms for future diagnostics

Acknowledgements

Biomarkers

Matej Oresic, Research professor Tuulia Hyötyläinen, Team leader Liisa Jäntti, Scientist

ICT

Jussi Mattila, Scientist Kimmo Jaakkola, Medical doctor Jyrki Lötjönen, Chief scientist Mark van Gils, Team leader Niilo Saranummi, Research Professor

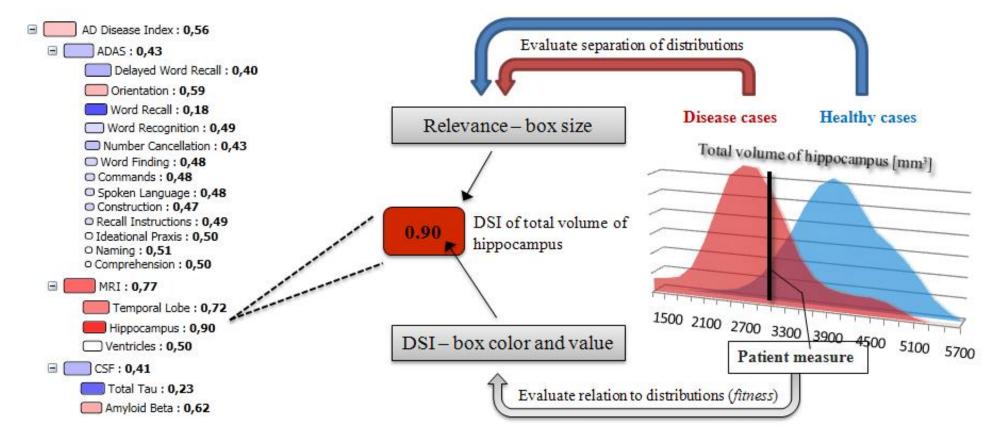
Diagnostics

Lotta Amundsen, Senior scientist Tarja Nevanen, Team Leader Petri Saviranta, Team Leader Kristiina Takkinen, Research professor Hans Söderlund, Research professor

Diagnostic technologies

Inger Vikholm-Lundin, Chief Scientist Leena Hakalahti, Team Leader Ari Hokkanen, Senior scientist Päivi Heimala, Tean Leader Kirsi Tappura, Team Leader

VTT creates business from technology


VTT TECHNICAL RESEARCH CENTRE OF FINLAND

32

Disease state index and disease state fingerprint techniques

• Decision support system developed allows easy visualization of the status of a person relative to different populations available in large databases.

Koikkalainen: Radiology, 2008 & Mattila: JAD, 2011 & One US patent & One patent pending