

Carbon Materials for Today and Future Turkish-Japanese Joint Carbon Symposium March 18 - 19, 2010 Istanbul Technical University

Pyrolytic Conversion of Structured Polymeric Materials to Porous Carbons

Masashi Kijima

Institute of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan E-mail: kijima@ims.tsukuba.ac.jp

Carbonization process of organic materials

Approaches to prepare porous carbons by pyrolytic methods

- From poly(*m*-phenylenebutadiynylene)s, P*m*PB, a rigid conjugated polymer
- From lignin-cellulose composites, wooden biomass materials
- From synthetic organic zeolites:
 Coordination polymers = Metal organic frameworks (MOFs), Covalent organic frameworks (COFs), and microporous polymers

(1) Pyrolytic conversion of structured poly(*m*-phenylenebutadiynylene)s P*m*PBs to porous C

(2) Pyrolytic conversion of structured Lignin-Cellulose composites to porous C

(3) Pyrolytic conversion of MOFs and COFs to porous C

Classification of C - C bonded materials having different hybrid orbitals and dimensions

Some conjugated polymeric materials for preparation of carbon materials

Good starting materials for Carbons

High content of CHigh yield carbonization behavior (>90% yield)To prepare one of the models of amorphous C

E. Fitzer et al., *High Temp. High Press.*, **3** (1971) 53.
A. E. Newkirk, et al., *J. Polym.Sci., Part A*, **2** (1964) 2217.

Rigid backbone

strong

interaction

Polymer blocks

- 1. How to increase the surface area .
- 2. How to regulate the porosity.

Porous carbon block with closed surfaces

Three Approaches

(1) Polymer gel method

Carbonized polymer gel consisting of Thin carbon blocks

Swelled polymer gel

Dried polymer gel (low density)

Conventional case: polymer particles are carbonized together to form large carbon blocks consisting of nano-scale basic structural units with cross linking reactions

Meso & Macroporous spaces

(2) Micellar method

Polymer particles are isolated each other by micelle formation. The carbonized blocks must be smaller than the conventional cases.

(3) Selective elimination of leaving group from hyperbranched polymer

Mater.Chem., 17 (2007) 4289.

C-PM1

TG/DTA of **PM1** and N₂ adsorption isotherm of **C-PM1**

Degradation and elimination of SDBS

Surface analysis results of C-PM1

	water	BET	s			DH		
	(mL)	$rac{\mathcal{S}_{ ext{total}}}{(ext{m2/g})}$	$egin{array}{c c} \mathcal{S}_{total} & \mathcal{V}_{micro} & \mathcal{W}_{micro} \\ (m2/g) & (m1/g) & (nm) \end{array}$			V _{meso} (ml∕g)	V _{total} (ml∕g)	V _{meso} / V _{total} (%)
C-P <i>m</i> PB	-	470	540	0.2	0.79	0.03	0.28	3.8
C-PM1-6	3	569	693	0.18	0.69	0.21	0.50	42.6
C-PM1-7	20	560	721	0.21	0.68	0.17	0.43	39.3
С-РМ1-8	50	638	727	0.14	0.71	0.45	0.81	56.4
C-PM1-9	100	674	859	0.20	0.64	0.25	0.59	42.1
C-PM1-10*	50	538	630	0.16	0.72	0.28	0.60	46.9

Diethynylbenzene (0.2 mL, 1.6 mmol), CuCI-TMEDA (0.34 mmol), SDBS (35 mg, 0.1mmol)

*: without freeze-drying process

(2)-2. Preparation of PM2 and C-PM2

N₂-Adsorption isotherms and pore distribution of **C-PM2**

Sample	C-yield (%)	S _{BET} (m²/g)	S _s (m²/g)	w _{micro} (ml/g)	V _{micro} (ml/g)	V _{meso} (ml/g)	V _{total} (ml/g)
C-P1	51.3	714	1028	0.62	0.3	0.06	0.4
C-PM2	51	818	990	0.59	0.15	0.45	0.92

(3) Synthesis of HP

Surface analysis data of HP and CHP

Material	Y	S			DH		
	(%)	S _{total} (m2/g)	V _{micro} (ml/g)	w _{micro} (nm)	V _{meso} (mI/g)	V _{total} (ml/g)	V _{meso} /V _{total} (%)
CP <i>m</i> PB	92	540	0.2	0.79	0.01	0.28	3.8
HP1(450)	43	260	0.10	0.99	0.01	0.18	3.1
CHP1	39	2	-	-	-	0.05	-
HP2(450)	69	940	0.26	0.67	0.16	0.51	32
CHP2	59	820	0.23	0.63	0.09	0.40	22
HP3(450)	69	820	0.21	0.75	0.14	0.55	26
CHP3	67	560	0.16	0.70	0.05	0.28	17

Electrical Double Layer Capacitances of C-PmPBs (three-electrode system in 1M H_2SO_4)

(1) Pyrolytic conversion of structured poly(*m*-phenylenebutadiynylene)s **PmPBs** to porous C

(2) Pyrolytic conversion of structured Lignin-Cellulose composites to porous C

(3) Pyrolytic conversion of MOFs and COFs to porous C

Purpose of our research

Synthesis of functional carbon-rich materials from wooden biomass without production of CO₂

Lignin

Advantage of lignin to convert into carbon materials: Lignin has the phenolic components: high C fixation ability on anaerobic pyrolysis

There has been reported several results on carbonization of lignin and preparation of activated carbon

Lignin Black powder , Water soluble

Elemental analysis

C: 51.72 %, H: 5.12 %, N: 0.13 % (Nacalai),

C: 51.83 %, H: 4.78 %, N: 0.11 % (Tokyo Kasei)

Reagent grade (available)

M 350 g/mol (cryoscopic method)

CL4 : deposition on the surface was a Na salt confirmed by XPS CLW : After washing CL4 with water, the deposition was cleaned off

	ple Yield (%)	<u> </u>		S			D	н
sample		S _{BET} (m²/g)	S _{total} (m²/g)	V _{micro} (ml/g)	W _{micro} (nm)	V _{total} (ml/g)	V _{meso} (ml/g)	V _{meso} / V _{total} (%)
CL4	46	664	655	0.09	0.90	0.55	0.15	28
CLW		899	1031	0.17	0.65	0.69	0.19	27

Carbonization results and N₂ adsorption data

Sodium Dodecylbenzenesulfonate(SDBS)

Reverse micelle

Preparation of micellar lignins and the carbonization

Preparation of micellar lignins (ML) and their carbonization

Particle samples could not be obtained in this case. In order to obtain particle lignins, (3) rigid lignin gels are synthesized

Carbonization and N₂ adsorption results

		c	S			V.	DH	
sample	Yield (%)	(m²/g)	S _{total} (m²/g)	V _{micro} (ml/g)	W _{micro} (nm)	v _{total} (ml/g)	V _{meso} (ml/g)	V _{meso} / V _{total} (%)
CL4	45	738	920	0.26	0.70	0.50	0.06	11
CML3	17	1340	928	0.19	1.14	1.16	0.45	39
CLG	42	915	1029	0.17	0.70	0.78	0.23	30
CMLG	29	1423	1528	0.28	0.78	1.14	0.30	26

Sample

(1) Pyrolytic conversion of structured poly(*m*-phenylenebutadiynylene)s **PmPBs** to porous C

(2) Pyrolytic conversion of structured Lignin-Cellulose composites to porous C

(3) Pyrolytic conversion of MOFs and COFs to porous C

Porous materials

Adsorbent, Catalyst, Catalyst support, Electrode(carbon)

Inorganic materials Zeolite, porous silica

Corroded metals

Coordination polymers Metal organic frameworks (MOFs)

Organic zeolite, COF, Microporous polymers

Carbon materials

Activated carbons Template carbons Pyrolytic carbons

Chemically, physically Stable, electrical conductive

MOF-177 (4500 m² g⁻¹, Langmuir) MIL-101 (5900 m² g⁻¹, Langmuir),

COF-103 (4210 m² g⁻¹, BET) PAF-1 (5600 m² g⁻¹,BET)

Conjugated microporous polymers

CMP-1

Microporous; SA_{BET} = 834 m²/g; MPV = 0.33 cm³/g; pore size - 1 nm^(1,2)

HCMP-1

P2

Microporous; SABET = 510 m²/g^[3]

PV_{tot} = 0.94 cm³/g^[7]

Micro/mesoporous; SA_{BET} = 842 m²/g PV_{tot} = 1.16 cm²/g; pore size ~ 1-5 nm^[4]

PPV network

Mesoporous; SA_{RET} = 761 m²/g PV_{tot} = 1.16 cm³/g; pore size - 5.6 nm^[6]

EOF-1

Microporous; SABET = 780 m²/g MPV = 0.32 cm³/g^[5]

Polyaniline HCP Meso/macroporous; SABET up to 632 m²/g

Microporous; SA_{BET} = 711 m²/g PV_{tot} = 0.40 cm³/g; pore size ~ 1.2 nm^[8]

P1 Microporous; SABET = 450 m²/g^[3]

Carbinol HCP

Mesoporous; SA_{BET} up to 1000 m²/g^[30]

Image of MOF constructing from the organic linker(TPEB) and metal ion

N₂ adsorption–desorption isotherms of the mesoporous coordination polymers and their carbonised samples

Organic linkers having triphenylene(TP) and tetraphenylmethane(TPM) structures

TP(X=OH), TPM (X=COCH2Br), TPM (X=COCI)

Summary of the surface parameters of COF and carbonized COF

Organic Linker	Connectors	Netw	Network material		C Yield %	Carbonized material		
		Yield %	S _{BET} m²/g	V _{total} ml/g		S _{BET} m²/g	V _{total} ml/g	V _{meso} /V _{total} %
TP(OH)	Ph(CH ₂ CI) ₂	85	2	0.07	56	585	0.56	34
TP(OH)	BrCH ₂ C CCH ₂ Br	70	220	0.36	57	480	0.29	20
TPM(CH ₂ COCI)	Ph(NH ₂) ₂	80	183	0.58	40	600	0.53	22
TPM(COCH ₂ Br)	HOCH ₂ C CCH ₂ OH	86	3	0.16	55	782	0.51	28
TPM(COCH ₂ Br)	Ph(COOK) ₃	90	42	0.12	40	798	0.81	44

Summary and Conclusions

(1)Pyrolytic conversion of structured poly(*m*-phenylenebutadiynylene)s **PmPBs** to porous C

Structuration Increase external surface high specific surface area + mesoporosity

- (2)Pyrolytic conversion of structured lignin-cellulose composites to porous C.
 - The soluble C(C1,C2) showed good carbonization yields. The L-C composites have a good processability to make thin films and particles. The structuration results in increase of S.
- (3)Pyrolytic conversion of MOFs and COFs to porous C The organic linkers showed high fixation of C on the pyrolysis. The network materials can be converted to microporous C

Acknowledgement

The author is grateful to :

(Theme I)

Mr. Y. Ichikawa, Mr. M. Suzuki (University of Tsukuba)

(Theme II) Cooperative Research of RISH, Kyoto University

Prof. T. Hata, Research Institute for Sustainable Humanosphere(RISH) Kyoto Univ.

Mr. T. Hirukawa, Mr. F. Hanawa (University of Tsukuba)

(Theme III)

Dr. N. Kobayashi, and Mr. T. Ishida (University of Tsukuba)