Adsorption Properties of Porous Carbons: Influence of Preadsorbed Water on Gas Adsorption Behavior

Jin MIYAWAKI\(^1\) and Katsumi KANEKO\(^2\)

\(^1\)Institute for Materials Chemistry and Engineering, Kyushu University
\(^2\)Graduate School of Science and Technology, Chiba University
1. Introduction
 - Characteristics and applications of porous carbons
 - Enhanced interaction potential in micropore
 - Adsorption characteristics of various molecules in micropore
2. Experimental
3. Results
 - Remarkable weight increase for water–preadsorbed ACF
 - Gas composition analyses
4. Hysteresis-assisted pressure-shift-induced water adsorption mechanism
5. Verification of the mechanism
6. Influence of adsorption hysteresis of water or temperature
7. Conclusion
Porous Carbons

Characteristics
- Large surface area
- Confined space
- Surface functionality

Applications
- Storage
- Gas storage
- Separation
 - Decolorization
 - Deodorization
 - Desalination
 - Solvent recovery
 - Desiccation
 - Gas separation
- Catalysis
 - Catalyst
- Support
 - Catalyst support

Schematic illustration of slit-shaped graphitic micropore
Steele’s 10–4–3 potential

\[\Phi(z) = 2\pi \varepsilon_{sf} \rho_s \sigma_{sf}^2 \left\{ \left(\frac{2}{5} \right) \left(\frac{\sigma_{sf}}{z} \right)^{10} - \left(\frac{\sigma_{sf}}{z} \right)^4 - \frac{\sigma_{sf}^4}{3\Delta(z + 0.61\Delta)^3} \right\} \]

Overlapping of potentials from face-to-face surfaces

\[\Phi(z)_{\text{pore}} = \Phi(z) + \Phi(H-z) \]
Adsorption Isotherms of Various Gases

$W = f(T, P, \text{solid, fluid})$

Adsorption and desorption isotherms of various gases on ACF P20

- **N$_2$ @77 K**
- **CH$_4$ @114 K**
- **H$_2$O @303 K**
- **CH$_4$ @303 K (supercritical)**

Adsorption amount W in mg g$^{-1}$

Relative pressure, P/P_0
Pre-Mixed Gas Adsorption

Slit-shaped micropore

Time dependence after introduction of pre-mixed gas of CH\(_4\) and H\(_2\)O (\(P_W = 2.5\) kPa) to ACF P20 at 303 K
Measured by Mr. T. Kanda
Experimental

Sample

Pitch-based Activated Carbon Fiber (ACF): P20

<table>
<thead>
<tr>
<th>Specific surface area (a_s) /m² g⁻¹</th>
<th>Micropore volume (W_0) /cm³ g⁻¹</th>
<th>Average pore width (w) /nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>P20</td>
<td>1800</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Pretreatment conditions

383 K, ≤ 1 mPa, 2 h

Apparatuses

- Mixed gas adsorption apparatus (gravimetric technique)
- Gas Chromatography, GC–8AIT (TCD)
Schematic Illustration of Gas Introduction Steps

Step 1
Preadsorption of water

Step 2
Mixing gases

Step 3
Introduction of mixed gas

Slit-shaped micropore
Effect of Preadsorbed Water

Time dependence of weight change after introduction of mixed gas to H₂O-preadsorbed ACF P20 at 303 K

$\phi_{W}^{ads} = 0.4$, $P_M = 4.5$ kPa

Max within 1–2 h

Possible reason of weight change

- Enhanced adsorption of CH₄
- Additional adsorption of H₂O

Long relaxation time

Quantitative analysis of gas composition

CH₄ ⋯ Gas Chromatography
H₂O ⋯ Karl Fischer method
Quantitative Analyses of Gas Composition by GC

<table>
<thead>
<tr>
<th>Time /Hour</th>
<th>Weight change /mg g⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Before</td>
</tr>
<tr>
<td>20</td>
<td>250</td>
</tr>
<tr>
<td>40</td>
<td>200</td>
</tr>
<tr>
<td>60</td>
<td>150</td>
</tr>
<tr>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>

Mostly due to additional adsorption of H₂O

Graph 1: Weight change over time

- **Graph 2: GC peak area**
 - Before introduction
 - After introduction

- **Introductions**
 - Before
 - After

- **Gases**
 - CH₄
 - Ar

Amounts of Ar or CH₄ in gas phase before and after introduction of mixed gas
Hysteresis-Assisted Pressure-Shift-Induced Water Adsorption Mechanism

A ⇒ B
1. Compression of water vapor
2. Increase of effective water pressure around sample (ΔP)
3. Additional adsorption of water (ΔW)

B ⇒ C
4. Relaxation of pressure
5. Partial desorption of water (ΔW - ΔW')

Transient Compression Effect

Point A
- **CH₄**
- **H₂O**
- Close

Point B
- Open
- Valve open

Point C
- Open
- Long equilibrium period
Adsorption and desorption scanning curves of H$_2$O on ACF P20 at 303 K
Verification of the Mechanism

Adsorption and desorption scanning curves of H$_2$O on ACF P20 at 303 K

- ○, □: Adsorption
- ●, ■: Desorption

Time dependence after introduction of mixed gas from H$_2$O desorption isotherm to H$_2$O–preadsorbed ACF P20 at 303 K

\[\phi_{W_{\text{des}}} = 0.34, \ P_M = 3.6 \text{ kPa} \]
Water Adsorption Isotherms of Microporous Carbons

Pitch–based Activated Carbon Fiber
P5, P10, P15, and P20 (Adol Co.)

KOH–activated Coal–based Activated Carbon
SAC31 (Kansai Coke Co.)

Micropore structural parameters obtained from α_S analysis

<table>
<thead>
<tr>
<th></th>
<th>a_S /m2 g$^{-1}$</th>
<th>W_0 /cm3 g$^{-1}$</th>
<th>w /nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>P5</td>
<td>880</td>
<td>0.29</td>
<td>0.67</td>
</tr>
<tr>
<td>P10</td>
<td>960</td>
<td>0.41</td>
<td>0.86</td>
</tr>
<tr>
<td>P15</td>
<td>1310</td>
<td>0.60</td>
<td>0.94</td>
</tr>
<tr>
<td>P20</td>
<td>1800</td>
<td>0.95</td>
<td>1.1</td>
</tr>
<tr>
<td>SAC31</td>
<td>2290</td>
<td>1.33</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Adsorption and desorption isotherms of H$_2$O on ACFs at 303 K
Relationship between Adsorption Hysteresis Area and Adsorption Uptake

Time dependence after introduction of mixed gas on H$_2$O-preadsorbed carbons at 303 K

Time dependence for P5 was measured by Mr. T. Kanda.

Relationship between area of adsorption hysteresis of H$_2$O and final adsorption uptake
Temperature Dependence

Time dependence after introduction of mixed gas to H₂O-preadsorbed ACF P20 at various temperatures

Relationship between temperature and final adsorption uptake or \(P₀ \) of bulk water
Interpretation of Temperature Dependence

Compliance effect

HOT

H2O

CH4

Valve open

Valve open

WEAK

STRONG
Hysteresis-Assisted Pressure-Shift-Induced Water Adsorption Mechanism

We must avoid usage of porous carbons near 50% relative pressure, especially at high temperature.
Thank you for your attention.

İlginiz için teşekkür ederiz.

ご静聴ありがとうございました。