CNF-composite as an effective route for novel functional materials

Sang-Min Jang, Jin Miyawaki, Seong-Ho Yoon, and Isao Mochida

IMCE, Kyushu University Kasuga, Fukuoka, 816-8580, Japan yoon@cm.kyushu-u.ac.jp

Flow of CNF studies in Kyushu University

Standard Carbon Nanofibers (CNFs)

PCNF PCNF Platelet CNF Fiber axis Edge surface Graphene layer alignment : Perpendicular to fiber axis **PCNF** axis **HCNF HCNF** Herringbone CNF Edge surface Graphene layer alignment : **HCNF** Lean against fiber axis axis 5 nm TCNF TCNF Tubular CNF **Basal plane surface** Graphene layer alignment : axis TCNF Parallel to fiber axis

KYUSHU UNIVERSITY

Langmuir, 2006, **22(22)**, 9086.

Mass Production of CNFs

Horizon type Capacity: several grams

> Capacity:H-, P-CNF 100g/1batch T-CNF 20g/1batch

> > Capacity: 500g/day

Scale up Vertical type

Scale up Vertical type Pressure

CNF (Variety of diameters)

Sample #	SEM	ТЕМ	Properties	Applications	Product
KNF-CM 小繊径 高分散	YJ SE 10.6v X30.00 100m WD 3mm		Herringbone, hollow 7 ~ 20 nm	複合材料、吸着剤、 触媒担体、FED	20-30 g/ ⊟
KNF-CC 小繊径	10 E 104/2 X50200 104m1 WD 7 8mm1		Herringbone 7 ~ 15 nm	複合材料、吸着剤、 触媒担体、FED	15-20 g/ ⊟
KNF-NM 中繊径	NONE EE 30/W X20000 100/mm WD 3.2mm	<u>10 nm</u>	Herringbone 10~60 nm (30~40)	複合材料、吸着剤、 触媒担体	50-70 g/ ⊟
KNF-NF 中繊径 直線性	NORE 321 3.047 20.009 100m VD8.0mm	<u>5 nm</u>	Herringbone 20 ~ 50 nm Straightness	複合材料、吸着剤、 触媒担体	50-70g/日

CNF (Variety of textures and shapes)

Typical classification of CNF Structure

- graphene ((002) layers) alignment to the fiber axis, TEM observation

< Simple cases of CNF structure >

• However, complicated structure is often found.

•The morphological diversity confirmed simply by SEM observation cannot be neglected, considering possibly their different physical properties.

Various cross sections of CNFs

Different Surface Characteristics

CNF (Variety of surfaces)

Highly graphitic CNFs

- **CNF of similar graphitic properties with Natural Graphite**
- CNT usually shows low graphitic properties
- Conductive materials or supports for heterogeneous catalysts

GPCNF-N			Preparation conditions	d ₀₀₂ (nm)	Lc(002) (nm)
			Fe catalyst_ 620, CO/H2 : 4/1	0.3365	72
PCNF,	F, HCNF	G-PCNF	2800°C heat treatment of PCNF	0.3364	83
	黒鉛化	G-PCNF-N	30% HNO3 treatment of GPCNF for 50°C. 8hs	0.3362	152
GPCNF		GG-PCNF-N	2800°C heat treatment of GPCNFN	0.3362	106
·	硝酸処理	BA-G-PCNF	Boric acid added heat treatment of PCNF	0.3359	115
G-PCNF-N		BA-GG-PCNF-N	30% HNO3 treatment of GPCNF for 50°C, 8hs Boric acid added heat treatment	0.3357	377
	B黒鉛化	BC-G-PCNF	Boron carbide added heat treatment of PCNF	0.3354	178
BA-GGPCNF-N		BC-GG-PCNF-N	30% HNO3 treatment of GPCNF for 50°C, 8hs Boron carbide added heat treatment	0.3354	167

N-doped CNFs

Modifications of CNEs

Synthesis of Magnetite Nanoparticle-Chain

Ref.) S.Y. Lim, et al. Carbon 2006: International Conference on Carbon, Robert Gordon College, Scotland (2006)

Platelet CNF Herringbone CNF Nano-Rod Nano-Plate Nano-Rod Nano-Plate

As-prepared STM images D: 3-5 nm nano-rod Graphitized axis axis axis axis Models H: 3-8 nm nano-plate

New finding by us: Platelet and herringbone CNFs are constructed by two types of sub-structural units, a **nano-rod** type and a **nano-plate** type.

b.an@aist.go.jp

Separated Units

S-H. Yoon et al., Carbon **42** (2004),3087. Carbon **43** (2005),1828.

KYUSHU UNIVERSITY

Basic carbon nanofibers

Structural Diversity of Carbon Nanofibers

Alignment of Graphene Layers to the Fiber AxisDiameter, Length

•3-Dimensional Shape – Cross Section

Physical, Chemical, Electrical, Electronic, Surface Properties

Platelet

Herringbone

CNF (Control of structures and properties)

🖡 KYUSHU UNIVERSITY

CNF (Catalysts)

🖉 KYUSHU UNIVERSITY

Background and Objective

- During last 3 decades, nano-carbons such as fullerene, CNT and graphene are important key materials in the advanced sciences and Engineerings.
- Big market based on such nano-carbons was very expected, but was hard to find.
- ⇒ What is the reason and how to develop a novel market?
- For the development of nano carbon market, we suggest here the CNT or CNF composites of functional materials as an effective route for developing novel or conventional functional materials through improving the unsatisfied property of the functional material for special application.

Concept of CNF composites

KYUSHU UNIVERSITY

Various CNF Composites

"Surface Control of Activated Carbon Fiber by Growth of Carbon Nanofiber" Seongyop Lim, Seong-Ho Yoon, Yoshiki Shimizu, Hangi Jung, and Isao Mochida Langmuir; 2004; *20*(13) pp 5559 – 5563

KYUSHU UNIVERSITY

Strength of MgO refractory for blust furnace

🛿 KYUSHU UNIVERSITY

Decreasing the electrode expansions

	SA(m²/g)	Density (g/cc)	Vol. Change(%)
AC	662	0.91	38~48
AC- CNF	271	0.92	5~9

CNF-composites for Li-ion Batteries

• SiO, Si and Sn (SiO 2100, Si 4200, Sn 931 mAh/g) are very promising materials as anodic materials of LIB for their large theoretical capacities, however, they have poor cycle performances because of internal crack in particles caused by large volumetric expansion in charge process.

Li-Si sy	stem			Ref.) I. Power Sources 192 (2) (2009) 644-651
Compound	Structure	Unit cell vol. (A ³)	Vol. / Si atom (A ³)	
Si	Cubic	160.2	20.0	Charge Disharge
Li ₁₂ Si ₇	Orthorhombic	243.6	58.0 VC	olume si
Li ₁₄ Si ₆	Rhombohedral	308.9	51.5 exp	Dansion LizzSis Si
Li ₁₃ Si ₄	Orthorhombic	538.4	67.3 (ove	r400%)
Li ₂₂ Si ₅	Cubic	659.2	82.4	

Ref. : A. John Appleby and et al., J Power Sources 163 (2007) 1003-1039

Objective & principle

• **Objective**, in this study, is a development of high performance anodic material using SiO, Si and Graphites for LIB.

• **Composite with carbon nanofiber (CNF)** is suggested as a solution to relieve volumetric expansion and improve cycle performance.

SiO-CNF composite

Preparation process of SiO-CNF Composite

KYUSHU UNIVERSITY

Analysis

TEM

XRD

Model of SiO-CNF composite

- SiO particle
 - Short/thin CNF (Supply conductivity to SiO surface)
- Long/thick CNF (Supply conductivity bet. SiO particles)

- SiO showed amorphous structure.
- The higher reacting temperature increased the graphitization degree of SiO-CNF composite.
- CNF structure according to reacting temp.
 - \Rightarrow 500°C(H-CNF), 600 °C (P-CNF)

Reaction condition for CNF compositeness

maximum amount of CNF at 500° C.

• Fe catalyst showed a tendency of linear growth.

after 30 min.

Cycle performance of SiO-CNF Composite

SiO-CNF composite showed the better discharge capacity, cycle performance and retention ratio than mixtures.

SEM of electrodes of composite and mixtures

Before Cycle test

After 25 cycle

No change before and after test

No change before and after test

Large crack was observed by cycles

Volumetric expansions of composite and mixtures

Volumetric expansion ratio was calculated from the thickness change before and after test.

Impregnation showed almost same volumetric change in all cases, where as SiO-CNF composite was lower volumetric change than mixtures after 3 cycle test.

Cycle performances of SiO-CNF composite

• SiO-CNF composite showed the improved cycle performances because the grown CNF on SiO relieved volumetric expansion of electrode.

The influences of prepared SiO-CNF composite

• Discharge capacities were $764 \sim 1092 \text{ mAh/g}$ when the amounts of CNF were $40 \sim 100 \text{ wt\%}$ compared with the weight ratio of SiO.

• However, initial efficiency was under 70% because of the increased surface area caused by CNF growth.

Si-CNF composite

Si-CNF composite

because CNF exfoliated from Si which had no surface acidity.

Oxidized Si-CNF composite

• To improve surface acidity, Si particle was oxidized at 700~900°C for 3 hrs with H₂O_g.

Adhesive power and uniformity of CNF was improved by surface oxidized Si, where as charge-discharge performance became poor.

Background

- Si is more cheap and has higher capacity.
- Si-CNF composite couldn't improve cycle performance because Si has no surface acidity such as SiO.
- Oxidized Si-CNF couldn't improve cycle performance because oxidized Si has no conductivity.

Solution

- ① Pyrolytic Carbon(PC) is coated on Si particle to improve Adhesion between Si and CNF (PCSi).
- \Rightarrow The coated PC provide conductivity with Si particles as well as Adhesion strength.
- 2 CNF is grown on PCSi to improve cycle performance
- ③ PC is re-coated on PCSi-CNF composite to improve initial efficiency by decreasing surface area.

Schematic model of PCSi-CNF composite

	Conditions	Results	
No PCSi	0.4 um, Matsushita denchi kogyo		
Step-I	$CH_4 : H_2, 900^{\circ}C, 30 \text{ min}$	PC 6%	
Step-II	Fe catalyst, CO : H_2 , 600°C	CNF 93%	
Step-III	10% HCl -24hr	-	
Step-IV	$CH_4 : H_2, 900^{\circ}C, 30 \text{ min}$	PC 8%	

Analysis of PCSi-CNF composite

SEM &TEM

Cycle performances of PCSi-CNF composite

W

- PC coating on Si and composite with CNF could improve cycle performance.
- PC coating on Si provide conductivity as well as Adhesion strength bet. Si and CNF.
- Cycle performance became poor by removing Fe catalyst.
- PC re-coating improved initial efficiency by decreasing surface area.

- CNF composites is a novel concept materials which can broaden the applications of fibrous nanocarbons.
- Conductivity and expansion properties of electrodes in battery can largely improved by the controlled growth of CNFs on the surface of electrode materials.

•This work was done within the category of CREST program of JST. We are sincerely appreciated to the financial support of JST.

•This work is supported by a grant from the Global-Center of Excellence (GCOE) in Novel Carbon Resource Sciences, Kyushu University. And, the authors are grateful for financial assistance provided by the Global-Centre of Excellence in Novel Carbon Resource Sciences, Kyushu University.

•The authors are very grateful to Dr. An Bai and Dr. Jang Sang-Min for their contributions on this work.

Thank you for your attentions !

