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Motivation 
- What are neural substrates for sequential behavior?

Generation Perception

Learning

• Speech
• Playing music 
• Dancing

Sequential behavior



Motivation 
- What are neural substrates for sequential behavior?

Birdsong

Generation Perception

Learning
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Neural activity pattern during singing

Hahnloser, Kozhevnikov and Fee, Nature, 2002

(Zebra finch)



Feedforward chain hypothesis

• Spikes propagate on feedforward chain network

Li & Greenside, Phys. Rev. E, 2006.
Jin, Ramazanoglu, & Seung, J. Comput. Neurosci. 2007.

It is suitable for fixed sequences. 
But how about variable sequences? 

Experimental evidences: 
Long & Fee, Nature, 2008; Long, Jin & Fee, Nature, 2010



Song of Bengalese finch
- Variable sequences including branching points 



Branching-chain hypothesis

inhibition

(Jin, Phys Rev E, 2009)
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• Mutual inhibition between branching chains 



Limitation of branching-chain model
• The transition is a simple Markov process

– The present active chain depends only on the last
active chain

Question: Syllable sequences of Bengalese 
finch songs are Markov processes? 

Chain E

Chain D
Chain C

Chain A

Chain B

Does not affect

?
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Test of  (first order) Markov assumption
Null hypothesis：

The transition probability to next syllable does not 
depend on preceding syllable (Markov assumption)
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(For the case “a” precedes “b”)

Significant difference 
→Second-order history dependency



Result

b c
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χ2(2) = 187.49, p < 0.0001

We found more than one significant second-order 
history dependency in all 16 birds.
(p < 0.01 with Bonferroni correction)
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inhibition

A
C

B

Then,…

• The branching-chain model is incorrect?

?



Two possible mechanism for history dependency

Time (sec)

Fr
eq

. (
H

z)

1.1 1.2 1.3 1.4 1.5 1.6
0

0.5

1

1.5

2

x 10
4 a c b d b a b c d 
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Hypothesis 1: 
Chain transition with higher-order dependency

Hypothesis 2: 
Many-to-one mapping from chains to syllables

a b c d 

Chain1 Chain2 Chain3 Chain4 Chain5

(Katahira, Okanoya and Okada, Biol. Cybern. 2007)



However…

• The neural activity data from HVC of singing
Bengalese finches are not available. 

• We examined two hypotheses based on song 
data by using statistical models. 

Bengalese finchZebra finch ?
HVCHVC
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Feature extraction - Auditory features

Auditory features
•Spectral entropy
•Duration
•Mean frequency

・・・x1 x2

(c.f. Tchernichovski et al. 2000)
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Hidden Markov Model (HMM)

State 1 State 2
State 3

Hidden 

Observable 

State 4

・・・

・・・

a11

a12

a22

a23

a33

a24

a41



State transition dynamics in HMM

1st order HMM:

0th order HMM (Gaussian mixture):

2nd order HMM:



Relationship between two hypotheses and 
statistical models

→ 2nd order-HMM

→ 1st order-HMM

a b c d 

Chain 1 Chain 2 Chain 3 Chain 4

Hypothesis 1: 
Chain transition with higher-order 
dependency

Hypothesis 2: 
Many-to-one mapping from chains to 
syllables

ba c d 

Chain1 Chain2 Chain3 Chain4 Chain5



Bayesian model selection

Model structure
•L : Markov order (0,1,2)
•K   : the number of hidden states 

Given data (auditory features): 

(→difficult to compute!)

Model posterior：

Marginal likelihood:
(     : model parameter set)

Lower bound
(variational free energy)

(can be computed by variational Bayes method)

Approximation



Result – model selection (one bird)
“Best model structure”

•With small number of states → 2nd order HMM
•With large number of states → 1st order HMM
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Results – model selection, cross validation 
(averages over 16 birds)
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HMM learns many-to-one mapping

(Similar results were obtained for 30 syllables 
of the 54 syllables where significant second-
order dependency was found)

Many-to-one mapping from 
the states to a syllable “b”
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Summary of results
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Many-to-one mapping – 1st HMM
State transition with higher-order 
dependency - 2nd-order HMM

This mechanism is sufficient for Bengalese finch song

a c b d b

•Bengalese finch songs have at least second-order 
history dependency.



Mapping onto neuroanatomy

• HVC - hidden state (branch ⇔ state )
• RA - auditory features of each syllable

(Katahira, Okanoya and Okada, 2007)



Future directions (ongoing research)

• How the brain can learn this representation?
– Analysis of development of song from a juvenile 

period.
– Developing a network model with synaptic plasticity 

for learning the many-to-one mapping. 
(e.g., Doya & Sejnowski, NIPS, 1995; 

Troyer & Doupe, J Neuropysiol, 2000;
Fiete, Fee & Seung, J Neuropysiol,2007)

• Applying HMMs to spike data recorded from songbird
(Katahira, Nishikawa, Okanoya & Okada, Neural Comput, 2010)



Overbiew of our approach

Anatomy,

Physiology

Behavior
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Statistical model

Parameter fitting,
Model selection
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