Hidden Markov processes can explain complex sequencing rules of birdsong: A statistical analysis and neural network modeling

Kentaro Katahira^{1,2,3}, Kenta Suzuki^{3,4}, Kazuo Okanoya^{1,2,3}, and Masato Okada^{1,2,3}

JST ERATO, Okanoya Emotional Information Project,
 The University of Tokyo, 3. RIKEN Brain Science Institute,
 Saitama University

Motivation

- What are neural substrates for sequential behavior?

Motivation

- What are neural substrates for sequential behavior?

Outline

- 1. Introduction
 - Neural substrates of birdsong
 - Neural network models
- 2. Statistics of birdsong
 - Higher-order history dependency
- 3. Statistical models for birdsong
- 4. Discussion
 - Neural implementation
 - Future directions

Neural activity pattern during singing

Feedforward chain hypothesis

Spikes propagate on feedforward chain network

Li & Greenside, Phys. Rev. E, 2006. Jin, Ramazanoglu, & Seung, J. Comput. Neurosci. 2007.

Experimental evidences: Long & Fee, Nature, 2008; Long, Jin & Fee, Nature, 2010

It is suitable for *fixed* sequences. But how about *variable* sequences?

Song of Bengalese finch - Variable sequences including branching points

abcbd h Freq. (kHz) 0.5 2.5 1.5 Time (sec) 0.22 0.69 0.96 0.19 1.00 a 0.31 0.81 0.97 0.45 0.09 0.69

0.31

Branching-chain hypothesis

Mutual inhibition between branching chains

Limitation of branching-chain model

- The transition is a simple Markov process
 - The present active chain depends only on the last active chain

Question: Syllable sequences of Bengalese finch songs are Markov processes?

Outline

- 1. Introduction
 - Neural substrates of birdsong
 - Neural network models
- 2. Statistics of birdsong
 - Higher-order history dependency
- 3. Statistical models for birdsong
- 4. Discussion
 - Neural implementation
 - Future directions

Test of (first order) Markov assumption

Null hypothesis:

The transition probability to next syllable does not depend on preceding syllable (Markov assumption)

Result

We found more than one significant second-order history dependency in all 16 birds.

(p < 0.01 with Bonferroni correction)

Then,...

• The branching-chain model is incorrect?

Two possible mechanism for history dependency

Hypothesis 2:

Many-to-one mapping from chains to syllables

Chain1 Chain2 Chain3 Chain4 Chain5

d C d

(Katahira, Okanoya and Okada, Biol. Cybern. 2007)

However...

• The neural activity data from HVC of singing Bengalese finches are not available.

 We examined two hypotheses based on song data by using statistical models.

Outline

- 1. Introduction
 - Neural substrates of birdsong
 - Neural network models
- 2. Statistics of birdsong
 - Higher-order history dependency
- 3. Statistical models for birdsong
- 4. Discussion
 - Neural implementation
 - Future directions

Feature extraction - Auditory features

(c.f. Tchernichovski et al. 2000)

Hidden Markov Model (HMM)

$$p(x|y=i) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma_i|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i)\right\}$$

State transition dynamics in HMM

2nd order HMM:
$$a_{ijk} = p(y_t = k | y_{t-1} = j, y_{t-2} = i)$$

0th order HMM (Gaussian mixture):

$$a_i = p(y_t = i)$$

Relationship between two hypotheses and statistical models

2nd order-HMM

1st order-HMM

Bayesian model selection

Given data (auditory features): $X = \{x_1, x_2, ...\}$

Model structure $\mathcal{M} = \{L, K\}$

- •L : Markov order (0,1,2)
- •K: the number of hidden states

Model posterior: $p(\mathcal{M}|X) \propto p(X|\mathcal{M})p(\mathcal{M})$

Marginal likelihood: $p(X|\mathcal{M}) = \int d\theta \, p(X|\theta, \mathcal{M}) p(\theta|\mathcal{M})$ (θ : model parameter set) (difficult to compute!)

Approximation

 $\log p(X|\mathcal{M}) \ge \mathcal{F}_{\mathcal{M}} \text{ Lower bound (variational free energy)}$

(can be computed by variational Bayes method)

Result – model selection (one bird)

"Best model structure"

- •With **small** number of states
- With large number of states

2nd order HMM 1st order HMM

Results – model selection, cross validation (averages over 16 birds)

HMM learns many-to-one mapping

Outline

- 1. Introduction
 - Neural substrates of birdsong
 - Neural network models
- 2. Statisticss of birdsong
 - Higher-order history dependency
- 3. Statistical models for birdsong
- 4. Discussion
 - Neural implementation
 - Future directions

Summary of results

•Bengalese finch songs have at least second-order history dependency.

This mechanism is sufficient for Bengalese finch song

Mapping onto neuroanatomy

- HVC hidden state (branch state)
- RA auditory features of each syllable

(Katahira, Okanoya and Okada, 2007)

Future directions (ongoing research)

- How the brain can learn this representation?
 - Analysis of development of song from a juvenile period.
 - Developing a network model with synaptic plasticity for learning the many-to-one mapping.

```
(e.g., Doya & Sejnowski, NIPS, 1995;
Troyer & Doupe, J Neuropysiol, 2000;
Fiete, Fee & Seung, J Neuropysiol,2007)
```

 Applying HMMs to spike data recorded from songbird (Katahira, Nishikawa, Okanoya & Okada, Neural Comput, 2010)

Overbiew of our approach

Respiratory