

Unsupervised Learning in recurrent networks

Jochen Triesch
Frankfurt Institute for Advanced Studies

- founded in 2004, own building since 2007
- ~140 people
- interdisciplinary theoretical research in and across physics,
 chemistry, biology, neuroscience, and computer science
- Frankfurt International Graduate School for Science

long-term depression long-term potentiation

short-term facilitation short-term depression

synaptic scaling

intrinsic plasticity

neuronal adaptation

neuromodulation

structural plasticity

neurogenesis

long-term depression long-term potentiation

short-term facilitation short-term depression

synaptic scaling

intrinsic plasticity

neuronal adaptation

neuromodulation

structural plasticity

neurogenesis

how do they interact? how do they shape neural circuits? how do they shape neural codes?

Network Self-Organiztion

Markram et al. 1997 Bi&Poo 1998

. . .

Markram et al. 1997 Bi&Poo 1998

- - -

intrinsic plasticity

Desai et al. 1999 Zhang&Linden 2003

. . .

Markram et al. 1997 Bi&Poo 1998

• • •

intrinsic plasticity

Desai et al. 1999 Zhang&Linden 2003

...

synaptic scaling

Turrigiano et al. 1998 Abbott&Nelson 2000

. . .

SORN: self-organizing recurrent neural network

Lazar, Pipa, Triesch (2009) Frontiers in Computational Neuroscience 3:23

Andreea Lazar

Gordon Pipa

Populations of coupled excitatory and inhibitory threshold units

Populations of coupled excitatory and inhibitory threshold units

$$y_i(t+1) = \Theta\left(\sum_{j=1}^{N^E} W_{ij}^{IE} x_j(t) - T_i^I\right)$$

Plasticity Mechanisms

Binarized STDP:

$$\Delta W_{ij}^{EE}(t) = \eta_{STDP} (x_i(t)x_j(t-1) - x_i(t-1)x_j(t))$$

Intrinsic plasticity:

$$T_i^E(t+1) = T_i^E(t) + \eta_{\rm IP} (x_i(t) - H_{\rm IP})$$

Synaptic scaling:

$$W_{ij}^{EE}(t) \leftarrow W_{ij}^{EE}(t) / \sum_{j} W_{ij}^{EE}(t)$$

A first test:

- input: six symbols (a-f) alternating randomly
- activity after self-organization is sparse and irregular

Homeostasis is important!

abolishing intrinsic plasticity or synaptic normalization:

Without intrinsic plasticity or synaptic normalization pathological activity patterns develop!

Counting Task

- Input sequences are random alternations of two words:
 - abb....bbbc
 - edd....dddf

n repetitions of middle letter

- training in two phases:
 - reservoir
 - readout

Counting Task

- Input sequences are random alternations of two words:
 - abb....bbbc <
 - edd....dddf

n repetitions of middle letter

- training in two phases:
 - reservoir
 - readout

How will the network learn to represent these input sequences?

7 8 9 10 11 12 13 1 Cluster number

5

6

11 12 13 14 15 16 17 18 19 20

Random Reservoir

Random Reservoir

Random reservoir

Principal Component

1st PC

SORNs outperform static reservoirs

"superfluid"

Spontaneous Activity

- Cortex exhibits patterned spontaneous activity [Tsodyks et al., 1999; Kenet et al., 2003; Fiser et al., 2004; Ringach 2009]
- Following repetetive presentation of a visual stimulus, spontaneous activity shows similarity to evoked response [Han et al., 2008]
- Spontaneous activity might represent the prior in a Bayesian inference sense [Berkes et al., 2009; Fiser et al., 2010]

$$p(r) = \sum_{s} p(r \mid s)p(s)$$

Spontaneous activity patterns match evoked activity

Spontaneous activity patterns reflect input statistics

Preliminary Work: Statistical Inference?

 \cdots AXXXXXMBXXXXXNAXXXXXMAXXXXXMBXXXXXNAXXXXXMAXXXXXMAXXXXXM \cdots

- 2 input words:
 - "AXXXXXM" (75%), "BXXXXXN" (25%)
- readout trained to predict `M´
 vs. `N´
- test: instead of `A´ or `B´, show mixtures of the two, e.g., 20% `A´ and 80% `B´

network combines ambiguous A/B input with prior information for prediction

Discussion

Acknowledgments

Lab:

- Pramod Chandrashekhariah
- Dr. Christos Dimitrakakis
- Dr. Manu P. John
- Dr. Prashant Joshi
- Daniel Krieg
- Luca Lonini
- Daniela Pamplona

- Dr. Constantin Rothkopf
- Sohrab Saeb
- Dr. Lisa Scocchia
- Dr. Philip Sterne
- Quan Wang
- Thomas Weisswange
- Dr. Pengsheng Zheng

Collaborators in this project:

- Dr. Andreea Lazar
- Dr. Gordon Pipa

THANK YOU!

Network Self-Organiztion

Reservoir Computing

- class of recurrent neural network architectures utilizing a "reservoir" with fixed random connectivity (review: Lukosevicius & Jaeger, 2009)
- examples: Echo State Neworks (Jaeger, 2001); Liquid state machines (Maas et al., 2002)
- fading memory property, separation property

Reservoir Computing

- class of recurrent neural network architectures utilizing a "reservoir" with fixed random connectivity (review: Lukosevicius & Jaeger, 2009)
- examples: Echo State Neworks (Jaeger, 2001); Liquid state machines (Maas et al., 2002)
- fading memory property, separation property

