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Activity blockade increases intrinsic excitability
Chronic activity blockade increased the excitability of pyrami-
dal neurons. To measure firing rates, we delivered constant cur-
rent pulses of variable amplitude and 500 ms duration through
the somatic pipet while monitoring membrane potential. All
current injections were applied from a resting potential of
–60 mV, maintained by injecting a small DC current. Synaptic
transmission was blocked pharmacologically. Neurons that were
activity deprived for two days fired much more rapidly than did
neurons from sister control cultures, both initially and later on
in the spike train (Fig. 1a). Average frequency versus current
(f–I) curves constructed by measuring the initial firing fre-
quency (inverse of period between first and second spikes) for
each current amplitude clearly show the differences
between the two conditions (Fig. 1b). The slope of the
initial, linear part of the curve for activity-deprived
neurons (0.40 ± 0.02 Hz/pA, n = 18) was approxi-
mately double that for control neurons
(0.23 ± 0.01 Hz/pA, n = 18). Moreover, at each cur-
rent amplitude above 20 pA, the average frequency of
activity-deprived neurons was significantly larger than
the average control frequency (p < 0.05, t-test); most
differences were highly significant (p < 0.005, t-test).
Most of these neurons showed relatively little spike
frequency adaptation, and the average increase in fir-
ing frequency for later spike intervals was comparable
to the initial increase. For example, activity blockade
increased the firing frequency in response to a current
injection of 150 pA by 60–80% in each of the first five
spike intervals.

We determined the time dependence of these
effects by varying the duration of activity deprivation
(Fig. 1c). Blocking activity for only 2.5 hours pro-
duced no discernible shift in the f–I curve. However,
24-hour activity blockade increased the slope of the
f–I curve by 50 ± 11%, a significant but smaller
increase in slope than that produced by 48-hour activ-
ity blockade (74 ± 11%). These data indicate that this

process is slow and cumulative, with a time course similar to
that of the activity-dependent changes in synaptic strengths
previously measured in these cultures10.

Activity blockade not only increased firing frequency, but also
lowered the spike threshold. Threshold current was determined
by increasing the amplitude of the current injection in one-
picoamp steps and noting the current at which a spike was first
elicited, and threshold voltage was determined by the highest
voltage evoked by the largest subthreshold current step (Fig. 1d).
Threshold current decreased from 41 ± 5 pA for control neurons
to 21 ± 3 pA for activity-deprived neurons (p < 0.05, n = 9 each
condition, t-test), and the threshold potential decreased from
–46 ± 1 mV for control neurons to –50 ± 1 mV for activity-
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Fig. 1. Chronic activity blockade increased the firing fre-
quency and lowered the spike threshold of pyramidal neu-
rons. (a) Sample spike trains evoked by a somatic current
injection in neurons grown under control and activity-
deprived conditions. The neurons shown came from sister
cultures and had very similar resting potentials and input
resistances (control, –61 mV, 1.0 G!; activity deprived,–62
mV, 0.9 G!). (b) Average f–I curves for control (n = 18) and
activity-deprived (n = 18) neurons. The plot shows initial
instantaneous firing frequency (frequency of first spike inter-
val) versus amplitude of current injection. (c) The size of the
increase in the initial slope of the f–I curve varied with the
duration of activity blockade. (d) Activity blockade reduced
the spike threshold. Top, an example control neuron just
below threshold (passive trace) and just above threshold
(action potential). The minimum current needed to evoke an
action potential was designated the threshold current, IT; the
maximum potential reached when the current injection was
just subthreshold was designated the threshold potential, VT.
Bottom, average values of threshold current and threshold
potential (n = 9, each condition); the latter is plotted relative
to the resting potential of Vm= –60 mV.
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Fig. 2. The amplitude of INa
was increased by activity
deprivation, but the voltage
dependence was unaltered.
(a) INa evoked in an activity-
deprived neuron by depolar-
izing voltage steps from a
holding potential of –60 mV
to step potentials between
–40 and +40 mV, in incre-
ments of 10 mV. (b) Average
current–voltage plots con-
structed by evoking currents
as in (a) and measuring peaks
(n = 21 control, n = 22 activ-
ity deprived). (c) Average
activation and inactivation
curves of INa (see Methods).
Activation (g/gmax) is given as
chord conductance normal-
ized to the value at +20 mV;
inactivation (I/Imax) is given as
current normalized to that
elicited from a holding poten-
tial of –100 mV.
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es synaptic strengths, characterized by the amplitudes of minia-
ture excitatory postsynaptic currents (mEPSCs), to increase in a
multiplicative manner (Fig. 1). Conversely, enhancing activity by
blocking inhibition scales down mEPSC amplitudes (Fig. 1).

Some biophysical mechanisms responsible for the bidirection-
al and multiplicative properties of synaptic scaling are understood.
Direct application of glutamate4 and fluorescent labeling of recep-
tors5,6 show that synaptic scaling is due to a postsynaptic change
in the number of functional glutamate receptors. Furthermore,
increasing synaptic strength during reduced activity is associated
with a decrease in the turnover rate of synaptic AMPA-type glu-
tamate receptors6. If receptor insertion and removal rates are dif-
ferentially scaled by activity, this can produce multiplicative changes
in synaptic strength7.

Synaptic scaling in combination with LTP and LTD seems to
generate something similar to a synaptic modification rule analyzed
by Oja8 that illustrates the power of stable, competitive Hebbian
plasticity (see Math Box). The Oja rule combines Hebbian plastic-
ity with a term that multiplicatively decreases the efficacy of all
synapses at a rate proportional to the square of the postsynaptic fir-
ing rate. In simple neuron models, this generates an interesting
form of input selectivity, related to a statistical method called prin-
cipal component analysis, in which neurons become selective to
the linear combination of their inputs with the maximum variance.
This is, in some sense, the most interesting and informative com-
bination of inputs to which the neuron can become responsive.

Activity manipulations scale both AMPA- and NMDA-receptor-
mediated forms of glutamatergic synaptic transmission9. Scaling
of the NMDA receptor component has implications for Hebbian
plasticity, because LTP and LTD are produced by calcium entry
through NMDA receptors. The standard view is that large amounts
of calcium entry induce LTP, whereas smaller amounts cause
LTD10. If neurons scale down NMDA receptor currents in response

to enhanced activity, this may make it more difficult to evoke LTP
and easier to induce LTD. Thus, in addition to multiplicatively
adjusting synaptic strengths, synaptic scaling may modify Heb-
bian plasticity in a manner functionally similar to the BCM model’s
sliding threshold.

Spike-timing dependent synaptic plasticity
Synaptic scaling is a non-Hebbian form of plasticity because it acts
across many synapses and seems to depend primarily on the post-
synaptic firing rate rather than on correlations between pre- and
postsynaptic activity. Purely Hebbian forms of plasticity can also
be used to regulate total levels of synaptic drive, but this requires a
delicate balance between LTP and LTD. The sensitivity of synap-
tic plasticity to the timing of postsynaptic action potentials (STDP)
can provide a mechanism for establishing and maintaining this
balance.

It has long been known that presynaptic activity that precedes
postsynaptic firing or depolarization can induce LTP, whereas
reversing this temporal order causes LTD11–13. Recent experimen-
tal results have expanded our knowledge of the effects of spike tim-
ing on LTP and LTD induction14–21. Although the mechanisms
that make synaptic plasticity sensitive to spike timing are not fully
understood, STDP seems to depend on an interplay between the
dynamics of NMDA receptor activation and the timing of action
potentials backpropagating through the dendrites of the postsy-
naptic neuron15,22,23.

The type and amount of long-term synaptic modification
induced by repeated pairing of pre- and postsynaptic action poten-
tials as a function of their relative timing varies in different prepa-
rations (Fig. 2). In general, synaptic modification is maximal for

Fig. 1. Synaptic scaling is
multiplicative. Quantal ampli-
tudes of miniature EPSCs
recorded from cortical pyra-
midal neurons in cultures that
experience normal levels of
spontaneous activity (control
amplitude) are rank ordered
and plotted against ampli-
tudes recorded in sister cul-
tures in which activity was
either blocked with the
sodium channel blocker
tetrototoxin (TTX) or
enhanced by blocking inhibition with bicuculline (BIC) for two days.
Activity blockade scales up mEPSC amplitude, whereas activity enhance-
ment scales it down. The plots are well fit by straight lines, indicating that
in both cases the scaling is multiplicative. Adapted from ref. 4.
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Fig. 2. The amount and type of synaptic modification (STDP) evoked by
repeated pairing of pre- and postsynaptic action potentials in different
preparations. The horizontal axis is the difference tpre – tpost between the
times of these spikes. The numerical labels on this axis are approximate
and are only intended to give an idea of the general scale. Results are
shown for slice recordings of neocortex layer 5 and layer 2/3 pyramidal
neurons14,21 and layer 4 spiny stellate cells20, in vivo recordings of retino-
tectal synapses in Xenopus tadpoles19, in vitro recordings of excitatory and
inhibitory synapses from hippocampal neurons11–13,15,17,18 (Ganguly et al.,
Soc. Neurosci. Abstr. 25, 291.6, 1999) and recordings from the electrosen-
sory lobe (ELL), a cerebellum-like structure in mormyrid electric fish16.
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Activity blockade increases intrinsic excitability
Chronic activity blockade increased the excitability of pyrami-
dal neurons. To measure firing rates, we delivered constant cur-
rent pulses of variable amplitude and 500 ms duration through
the somatic pipet while monitoring membrane potential. All
current injections were applied from a resting potential of
–60 mV, maintained by injecting a small DC current. Synaptic
transmission was blocked pharmacologically. Neurons that were
activity deprived for two days fired much more rapidly than did
neurons from sister control cultures, both initially and later on
in the spike train (Fig. 1a). Average frequency versus current
(f–I) curves constructed by measuring the initial firing fre-
quency (inverse of period between first and second spikes) for
each current amplitude clearly show the differences
between the two conditions (Fig. 1b). The slope of the
initial, linear part of the curve for activity-deprived
neurons (0.40 ± 0.02 Hz/pA, n = 18) was approxi-
mately double that for control neurons
(0.23 ± 0.01 Hz/pA, n = 18). Moreover, at each cur-
rent amplitude above 20 pA, the average frequency of
activity-deprived neurons was significantly larger than
the average control frequency (p < 0.05, t-test); most
differences were highly significant (p < 0.005, t-test).
Most of these neurons showed relatively little spike
frequency adaptation, and the average increase in fir-
ing frequency for later spike intervals was comparable
to the initial increase. For example, activity blockade
increased the firing frequency in response to a current
injection of 150 pA by 60–80% in each of the first five
spike intervals.

We determined the time dependence of these
effects by varying the duration of activity deprivation
(Fig. 1c). Blocking activity for only 2.5 hours pro-
duced no discernible shift in the f–I curve. However,
24-hour activity blockade increased the slope of the
f–I curve by 50 ± 11%, a significant but smaller
increase in slope than that produced by 48-hour activ-
ity blockade (74 ± 11%). These data indicate that this

process is slow and cumulative, with a time course similar to
that of the activity-dependent changes in synaptic strengths
previously measured in these cultures10.

Activity blockade not only increased firing frequency, but also
lowered the spike threshold. Threshold current was determined
by increasing the amplitude of the current injection in one-
picoamp steps and noting the current at which a spike was first
elicited, and threshold voltage was determined by the highest
voltage evoked by the largest subthreshold current step (Fig. 1d).
Threshold current decreased from 41 ± 5 pA for control neurons
to 21 ± 3 pA for activity-deprived neurons (p < 0.05, n = 9 each
condition, t-test), and the threshold potential decreased from
–46 ± 1 mV for control neurons to –50 ± 1 mV for activity-

articles

Fig. 1. Chronic activity blockade increased the firing fre-
quency and lowered the spike threshold of pyramidal neu-
rons. (a) Sample spike trains evoked by a somatic current
injection in neurons grown under control and activity-
deprived conditions. The neurons shown came from sister
cultures and had very similar resting potentials and input
resistances (control, –61 mV, 1.0 G!; activity deprived,–62
mV, 0.9 G!). (b) Average f–I curves for control (n = 18) and
activity-deprived (n = 18) neurons. The plot shows initial
instantaneous firing frequency (frequency of first spike inter-
val) versus amplitude of current injection. (c) The size of the
increase in the initial slope of the f–I curve varied with the
duration of activity blockade. (d) Activity blockade reduced
the spike threshold. Top, an example control neuron just
below threshold (passive trace) and just above threshold
(action potential). The minimum current needed to evoke an
action potential was designated the threshold current, IT; the
maximum potential reached when the current injection was
just subthreshold was designated the threshold potential, VT.
Bottom, average values of threshold current and threshold
potential (n = 9, each condition); the latter is plotted relative
to the resting potential of Vm= –60 mV.
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Fig. 2. The amplitude of INa
was increased by activity
deprivation, but the voltage
dependence was unaltered.
(a) INa evoked in an activity-
deprived neuron by depolar-
izing voltage steps from a
holding potential of –60 mV
to step potentials between
–40 and +40 mV, in incre-
ments of 10 mV. (b) Average
current–voltage plots con-
structed by evoking currents
as in (a) and measuring peaks
(n = 21 control, n = 22 activ-
ity deprived). (c) Average
activation and inactivation
curves of INa (see Methods).
Activation (g/gmax) is given as
chord conductance normal-
ized to the value at +20 mV;
inactivation (I/Imax) is given as
current normalized to that
elicited from a holding poten-
tial of –100 mV.
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 Populations of coupled excitatory and inhibitory threshold units
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Plasticity Mechanisms
 Binarized STDP:

 Intrinsic plasticity:

 Synaptic scaling:
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A first test:

• input: six symbols (a-f) alternating randomly

• activity after self-organization is sparse and irregular

…  b  d  f  e  a  f  a  c  c  d  …



Homeostasis is important!

 abolishing intrinsic plasticity or synaptic normalization:

Without intrinsic plasticity or synaptic normalization
pathological activity patterns develop!



Counting Task
 Input sequences are random alternations of two words: 
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Lazar et al. SORN: a self-organizing recurrent network

point in more detail. To this end, we summed the neurons’ responses 
for each of the eight locations of the visual space irrespective of 
motion direction or occluder presence. The neuron in (Figure 4E) 
responded unselectively to all eight locations before any plasticity 
(static reservoir case, blue squares) and after  learning it has devel-
oped a clear preference for location 4 (SORN case, green circles). 

The neuron in (Figure 4F) was silent in the initial network setup 
(static reservoir case). Through plasticity, it developed selectivity for 
locations 3 and 7 (SORN case). Interestingly, this selectivity is also 
specifi c with regard to motion direction. The neuron fi res when a 
stimulus is at location 3 moving to the right, or when the stimulus 
is at location 7 moving to the left (not shown).
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FIGURE 3 | (A) Result of hierarchical clustering of the internal representation of 
a static random reservoir. Only a single stage with 20 clusters is shown. For 
each of the 20 clusters, a histogram depicts the different input conditions that 
contributed to the cluster. Clusters tend to mix many distinct input conditions, 
especially different repetitions of ‘b’ or ‘d’, instead of keeping them separate. 
(B) Histogram showing how many different input conditions contribute to each 
of the 20 clusters. (C) Result of PCA on the pseudo state x' corresponding to 
the last six letters of the input sequence ‘eddddddddf’ which we refer to as ‘d4’, 
‘d5’, ‘d6’, ‘d7’,‘d8’ and ‘f’. Identical input conditions are spread far apart and 

strongly overlap with other input conditions. (D) The amount of variance 
explained by the fi rst principal components. (E–H) Same as (A–D) but for 
SORNs. (E) The cluster structure in SORNs refl ects the different input 
conditions. (F) Representations of different inputs are comparatively distinct 
such that only one or two input conditions contribute to each cluster. (G) In 
PCA space, the different input conditions form compact clusters that are well 
separated for different input conditions. (H) Most of the variance is captured by 
only the fi rst few principal components, suggesting more orderly dynamics in 
the SORNs.
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point in more detail. To this end, we summed the neurons’ responses 
for each of the eight locations of the visual space irrespective of 
motion direction or occluder presence. The neuron in (Figure 4E) 
responded unselectively to all eight locations before any plasticity 
(static reservoir case, blue squares) and after  learning it has devel-
oped a clear preference for location 4 (SORN case, green circles). 

The neuron in (Figure 4F) was silent in the initial network setup 
(static reservoir case). Through plasticity, it developed selectivity for 
locations 3 and 7 (SORN case). Interestingly, this selectivity is also 
specifi c with regard to motion direction. The neuron fi res when a 
stimulus is at location 3 moving to the right, or when the stimulus 
is at location 7 moving to the left (not shown).
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a static random reservoir. Only a single stage with 20 clusters is shown. For 
each of the 20 clusters, a histogram depicts the different input conditions that 
contributed to the cluster. Clusters tend to mix many distinct input conditions, 
especially different repetitions of ‘b’ or ‘d’, instead of keeping them separate. 
(B) Histogram showing how many different input conditions contribute to each 
of the 20 clusters. (C) Result of PCA on the pseudo state x' corresponding to 
the last six letters of the input sequence ‘eddddddddf’ which we refer to as ‘d4’, 
‘d5’, ‘d6’, ‘d7’,‘d8’ and ‘f’. Identical input conditions are spread far apart and 

strongly overlap with other input conditions. (D) The amount of variance 
explained by the fi rst principal components. (E–H) Same as (A–D) but for 
SORNs. (E) The cluster structure in SORNs refl ects the different input 
conditions. (F) Representations of different inputs are comparatively distinct 
such that only one or two input conditions contribute to each cluster. (G) In 
PCA space, the different input conditions form compact clusters that are well 
separated for different input conditions. (H) Most of the variance is captured by 
only the fi rst few principal components, suggesting more orderly dynamics in 
the SORNs.
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point in more detail. To this end, we summed the neurons’ responses 
for each of the eight locations of the visual space irrespective of 
motion direction or occluder presence. The neuron in (Figure 4E) 
responded unselectively to all eight locations before any plasticity 
(static reservoir case, blue squares) and after  learning it has devel-
oped a clear preference for location 4 (SORN case, green circles). 

The neuron in (Figure 4F) was silent in the initial network setup 
(static reservoir case). Through plasticity, it developed selectivity for 
locations 3 and 7 (SORN case). Interestingly, this selectivity is also 
specifi c with regard to motion direction. The neuron fi res when a 
stimulus is at location 3 moving to the right, or when the stimulus 
is at location 7 moving to the left (not shown).
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a static random reservoir. Only a single stage with 20 clusters is shown. For 
each of the 20 clusters, a histogram depicts the different input conditions that 
contributed to the cluster. Clusters tend to mix many distinct input conditions, 
especially different repetitions of ‘b’ or ‘d’, instead of keeping them separate. 
(B) Histogram showing how many different input conditions contribute to each 
of the 20 clusters. (C) Result of PCA on the pseudo state x' corresponding to 
the last six letters of the input sequence ‘eddddddddf’ which we refer to as ‘d4’, 
‘d5’, ‘d6’, ‘d7’,‘d8’ and ‘f’. Identical input conditions are spread far apart and 

strongly overlap with other input conditions. (D) The amount of variance 
explained by the fi rst principal components. (E–H) Same as (A–D) but for 
SORNs. (E) The cluster structure in SORNs refl ects the different input 
conditions. (F) Representations of different inputs are comparatively distinct 
such that only one or two input conditions contribute to each cluster. (G) In 
PCA space, the different input conditions form compact clusters that are well 
separated for different input conditions. (H) Most of the variance is captured by 
only the fi rst few principal components, suggesting more orderly dynamics in 
the SORNs.
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point in more detail. To this end, we summed the neurons’ responses 
for each of the eight locations of the visual space irrespective of 
motion direction or occluder presence. The neuron in (Figure 4E) 
responded unselectively to all eight locations before any plasticity 
(static reservoir case, blue squares) and after  learning it has devel-
oped a clear preference for location 4 (SORN case, green circles). 

The neuron in (Figure 4F) was silent in the initial network setup 
(static reservoir case). Through plasticity, it developed selectivity for 
locations 3 and 7 (SORN case). Interestingly, this selectivity is also 
specifi c with regard to motion direction. The neuron fi res when a 
stimulus is at location 3 moving to the right, or when the stimulus 
is at location 7 moving to the left (not shown).
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FIGURE 3 | (A) Result of hierarchical clustering of the internal representation of 
a static random reservoir. Only a single stage with 20 clusters is shown. For 
each of the 20 clusters, a histogram depicts the different input conditions that 
contributed to the cluster. Clusters tend to mix many distinct input conditions, 
especially different repetitions of ‘b’ or ‘d’, instead of keeping them separate. 
(B) Histogram showing how many different input conditions contribute to each 
of the 20 clusters. (C) Result of PCA on the pseudo state x' corresponding to 
the last six letters of the input sequence ‘eddddddddf’ which we refer to as ‘d4’, 
‘d5’, ‘d6’, ‘d7’,‘d8’ and ‘f’. Identical input conditions are spread far apart and 

strongly overlap with other input conditions. (D) The amount of variance 
explained by the fi rst principal components. (E–H) Same as (A–D) but for 
SORNs. (E) The cluster structure in SORNs refl ects the different input 
conditions. (F) Representations of different inputs are comparatively distinct 
such that only one or two input conditions contribute to each cluster. (G) In 
PCA space, the different input conditions form compact clusters that are well 
separated for different input conditions. (H) Most of the variance is captured by 
only the fi rst few principal components, suggesting more orderly dynamics in 
the SORNs.
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point in more detail. To this end, we summed the neurons’ responses 
for each of the eight locations of the visual space irrespective of 
motion direction or occluder presence. The neuron in (Figure 4E) 
responded unselectively to all eight locations before any plasticity 
(static reservoir case, blue squares) and after  learning it has devel-
oped a clear preference for location 4 (SORN case, green circles). 

The neuron in (Figure 4F) was silent in the initial network setup 
(static reservoir case). Through plasticity, it developed selectivity for 
locations 3 and 7 (SORN case). Interestingly, this selectivity is also 
specifi c with regard to motion direction. The neuron fi res when a 
stimulus is at location 3 moving to the right, or when the stimulus 
is at location 7 moving to the left (not shown).
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FIGURE 3 | (A) Result of hierarchical clustering of the internal representation of 
a static random reservoir. Only a single stage with 20 clusters is shown. For 
each of the 20 clusters, a histogram depicts the different input conditions that 
contributed to the cluster. Clusters tend to mix many distinct input conditions, 
especially different repetitions of ‘b’ or ‘d’, instead of keeping them separate. 
(B) Histogram showing how many different input conditions contribute to each 
of the 20 clusters. (C) Result of PCA on the pseudo state x' corresponding to 
the last six letters of the input sequence ‘eddddddddf’ which we refer to as ‘d4’, 
‘d5’, ‘d6’, ‘d7’,‘d8’ and ‘f’. Identical input conditions are spread far apart and 

strongly overlap with other input conditions. (D) The amount of variance 
explained by the fi rst principal components. (E–H) Same as (A–D) but for 
SORNs. (E) The cluster structure in SORNs refl ects the different input 
conditions. (F) Representations of different inputs are comparatively distinct 
such that only one or two input conditions contribute to each cluster. (G) In 
PCA space, the different input conditions form compact clusters that are well 
separated for different input conditions. (H) Most of the variance is captured by 
only the fi rst few principal components, suggesting more orderly dynamics in 
the SORNs.
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point in more detail. To this end, we summed the neurons’ responses 
for each of the eight locations of the visual space irrespective of 
motion direction or occluder presence. The neuron in (Figure 4E) 
responded unselectively to all eight locations before any plasticity 
(static reservoir case, blue squares) and after  learning it has devel-
oped a clear preference for location 4 (SORN case, green circles). 

The neuron in (Figure 4F) was silent in the initial network setup 
(static reservoir case). Through plasticity, it developed selectivity for 
locations 3 and 7 (SORN case). Interestingly, this selectivity is also 
specifi c with regard to motion direction. The neuron fi res when a 
stimulus is at location 3 moving to the right, or when the stimulus 
is at location 7 moving to the left (not shown).
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FIGURE 3 | (A) Result of hierarchical clustering of the internal representation of 
a static random reservoir. Only a single stage with 20 clusters is shown. For 
each of the 20 clusters, a histogram depicts the different input conditions that 
contributed to the cluster. Clusters tend to mix many distinct input conditions, 
especially different repetitions of ‘b’ or ‘d’, instead of keeping them separate. 
(B) Histogram showing how many different input conditions contribute to each 
of the 20 clusters. (C) Result of PCA on the pseudo state x' corresponding to 
the last six letters of the input sequence ‘eddddddddf’ which we refer to as ‘d4’, 
‘d5’, ‘d6’, ‘d7’,‘d8’ and ‘f’. Identical input conditions are spread far apart and 

strongly overlap with other input conditions. (D) The amount of variance 
explained by the fi rst principal components. (E–H) Same as (A–D) but for 
SORNs. (E) The cluster structure in SORNs refl ects the different input 
conditions. (F) Representations of different inputs are comparatively distinct 
such that only one or two input conditions contribute to each cluster. (G) In 
PCA space, the different input conditions form compact clusters that are well 
separated for different input conditions. (H) Most of the variance is captured by 
only the fi rst few principal components, suggesting more orderly dynamics in 
the SORNs.
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point in more detail. To this end, we summed the neurons’ responses 
for each of the eight locations of the visual space irrespective of 
motion direction or occluder presence. The neuron in (Figure 4E) 
responded unselectively to all eight locations before any plasticity 
(static reservoir case, blue squares) and after  learning it has devel-
oped a clear preference for location 4 (SORN case, green circles). 

The neuron in (Figure 4F) was silent in the initial network setup 
(static reservoir case). Through plasticity, it developed selectivity for 
locations 3 and 7 (SORN case). Interestingly, this selectivity is also 
specifi c with regard to motion direction. The neuron fi res when a 
stimulus is at location 3 moving to the right, or when the stimulus 
is at location 7 moving to the left (not shown).
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FIGURE 3 | (A) Result of hierarchical clustering of the internal representation of 
a static random reservoir. Only a single stage with 20 clusters is shown. For 
each of the 20 clusters, a histogram depicts the different input conditions that 
contributed to the cluster. Clusters tend to mix many distinct input conditions, 
especially different repetitions of ‘b’ or ‘d’, instead of keeping them separate. 
(B) Histogram showing how many different input conditions contribute to each 
of the 20 clusters. (C) Result of PCA on the pseudo state x' corresponding to 
the last six letters of the input sequence ‘eddddddddf’ which we refer to as ‘d4’, 
‘d5’, ‘d6’, ‘d7’,‘d8’ and ‘f’. Identical input conditions are spread far apart and 

strongly overlap with other input conditions. (D) The amount of variance 
explained by the fi rst principal components. (E–H) Same as (A–D) but for 
SORNs. (E) The cluster structure in SORNs refl ects the different input 
conditions. (F) Representations of different inputs are comparatively distinct 
such that only one or two input conditions contribute to each cluster. (G) In 
PCA space, the different input conditions form compact clusters that are well 
separated for different input conditions. (H) Most of the variance is captured by 
only the fi rst few principal components, suggesting more orderly dynamics in 
the SORNs.
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point in more detail. To this end, we summed the neurons’ responses 
for each of the eight locations of the visual space irrespective of 
motion direction or occluder presence. The neuron in (Figure 4E) 
responded unselectively to all eight locations before any plasticity 
(static reservoir case, blue squares) and after  learning it has devel-
oped a clear preference for location 4 (SORN case, green circles). 

The neuron in (Figure 4F) was silent in the initial network setup 
(static reservoir case). Through plasticity, it developed selectivity for 
locations 3 and 7 (SORN case). Interestingly, this selectivity is also 
specifi c with regard to motion direction. The neuron fi res when a 
stimulus is at location 3 moving to the right, or when the stimulus 
is at location 7 moving to the left (not shown).
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FIGURE 3 | (A) Result of hierarchical clustering of the internal representation of 
a static random reservoir. Only a single stage with 20 clusters is shown. For 
each of the 20 clusters, a histogram depicts the different input conditions that 
contributed to the cluster. Clusters tend to mix many distinct input conditions, 
especially different repetitions of ‘b’ or ‘d’, instead of keeping them separate. 
(B) Histogram showing how many different input conditions contribute to each 
of the 20 clusters. (C) Result of PCA on the pseudo state x' corresponding to 
the last six letters of the input sequence ‘eddddddddf’ which we refer to as ‘d4’, 
‘d5’, ‘d6’, ‘d7’,‘d8’ and ‘f’. Identical input conditions are spread far apart and 

strongly overlap with other input conditions. (D) The amount of variance 
explained by the fi rst principal components. (E–H) Same as (A–D) but for 
SORNs. (E) The cluster structure in SORNs refl ects the different input 
conditions. (F) Representations of different inputs are comparatively distinct 
such that only one or two input conditions contribute to each cluster. (G) In 
PCA space, the different input conditions form compact clusters that are well 
separated for different input conditions. (H) Most of the variance is captured by 
only the fi rst few principal components, suggesting more orderly dynamics in 
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point in more detail. To this end, we summed the neurons’ responses 
for each of the eight locations of the visual space irrespective of 
motion direction or occluder presence. The neuron in (Figure 4E) 
responded unselectively to all eight locations before any plasticity 
(static reservoir case, blue squares) and after  learning it has devel-
oped a clear preference for location 4 (SORN case, green circles). 

The neuron in (Figure 4F) was silent in the initial network setup 
(static reservoir case). Through plasticity, it developed selectivity for 
locations 3 and 7 (SORN case). Interestingly, this selectivity is also 
specifi c with regard to motion direction. The neuron fi res when a 
stimulus is at location 3 moving to the right, or when the stimulus 
is at location 7 moving to the left (not shown).
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FIGURE 3 | (A) Result of hierarchical clustering of the internal representation of 
a static random reservoir. Only a single stage with 20 clusters is shown. For 
each of the 20 clusters, a histogram depicts the different input conditions that 
contributed to the cluster. Clusters tend to mix many distinct input conditions, 
especially different repetitions of ‘b’ or ‘d’, instead of keeping them separate. 
(B) Histogram showing how many different input conditions contribute to each 
of the 20 clusters. (C) Result of PCA on the pseudo state x' corresponding to 
the last six letters of the input sequence ‘eddddddddf’ which we refer to as ‘d4’, 
‘d5’, ‘d6’, ‘d7’,‘d8’ and ‘f’. Identical input conditions are spread far apart and 

strongly overlap with other input conditions. (D) The amount of variance 
explained by the fi rst principal components. (E–H) Same as (A–D) but for 
SORNs. (E) The cluster structure in SORNs refl ects the different input 
conditions. (F) Representations of different inputs are comparatively distinct 
such that only one or two input conditions contribute to each cluster. (G) In 
PCA space, the different input conditions form compact clusters that are well 
separated for different input conditions. (H) Most of the variance is captured by 
only the fi rst few principal components, suggesting more orderly dynamics in 
the SORNs.
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Spontaneous Activity 

• Cortex exhibits patterned spontaneous activity [Tsodyks et al., 
1999; Kenet et al., 2003; Fiser et al., 2004; Ringach 2009]

• Following repetetive presentation of a visual stimulus, 
spontaneous activity shows similarity to evoked response [Han 
et al., 2008]

• Spontaneous activity might represent the prior in a Bayesian 
inference sense [Berkes et al., 2009; Fiser et al., 2010]

p(r) =
∑

s

p(r | s)p(s)

The posterior distribution is inferred by combining infor-
mation from two sources: the sensory input, and the prior
distribution describing a priori beliefs about the sensory
environment (Figure 3b). Intuitively, in the absence of
sensory stimulation, this distribution will collapse to the
prior distribution, and spontaneous activity will represent
this prior (Figure 4).

This proposal linking spontaneous activity to the prior
distribution has implications that can address many of the
issues developed in this review. It provides an account of
spontaneous activity that is consistent with one of its main
features: its remarkable similarity to evoked activity
[64,66,67]. A general feature of statistical models that
are appropriately describing their inputs is that the prior
distribution and the average posterior distribution closely
match each other [68]. Thus, if evoked and spontaneous

activities represent samples from the posterior and prior
distributions, respectively, under an appropriate model of
the environment, they are expected to be similar [53]. In
addition, spontaneous activity itself, as prior expectation,
should be sufficient to evoke firing in some cells without
sensory input, as was observed experimentally [67].

Statistical neural networks also suggest that sampling
from the prior can be more than just a byproduct of
probabilistic inference: it can be computationally advan-
tageous for the functioning of the network. In the absence
of stimulation, during awake spontaneous activity,
sampling from the prior can help with driving the network
close to states that are probable to be valid inferences once
input arrives, thus potentially shortening the reaction time
of the system [69]. This ‘‘priming’’ effect could present an
alternative account of why human subjects are able to sort

Box 3. Spontaneous activity in the cortex

Spontaneous activity in the cortex is defined as ongoing neural activity
in the absence of sensory stimulation [83]. This definition is the clearest
in the case of primary sensory cortices where neural activity has
traditionally been linked very closely to sensory input. Despite some
early observations that it can influence behavior, cortical spontaneous
activity has been considered stochastic noise [84]. The discovery of
retinal and later cortical waves [85] of neural activity in the maturing
nervous system has changed this view in developmental neuroscience,
igniting an ongoing debate about the possible functional role of such
spontaneous activity during development [86].

Several recent results based on the activities of neural populations
initiated a similar shift in view about the role of spontaneous activity
in the cortex during real-time perceptual processes [65]. Imaging and
multi-electrode studies showed that spontaneous activity has large
scale spatiotemporal structure over millimeters of the cortical surface,
that the mean amplitude of this activity is comparable to that of
evoked activity and it links distant cortical areas together [64,87,88]
(Figure I). Given the high energy cost of cortical spike activity [89],
these findings argue against the idea of spontaneous activity being
mere noise. Further investigations found that spontaneous activity
shows repetitive patterns [90,91], it reflects the structure of the

underlying neural circuitry [67], which might represent visual
attributes [66], that the second order correlational structure of
spontaneous and evoked activity is very similar and it changes
systematically with age [64]. Thus, cell responses even in primary
sensory cortices are determined by the combination of spontaneous
and bottom-up, external stimulus-driven activity.
The link between spontaneous and evoked activity is further

promoted by findings that after repetitive presentation of a sensory
stimulus, spontaneous activity exhibits patterns of activity reminis-
cent to those seen during evoked activity [92]. This suggests that
spontaneous activity might be altered on various time scales leading
to perceptual adaptation and learning. These results led to an
increasing consensus that spontaneous activity might have a func-
tional role in perceptual processes that is related to internal states of
cell assemblies in the brain, expressed via top-down effects that
embody expectations, predictions and attentional processes [93] and
manifested in modulating functional connectivity of the network [94].
Although there have been theoretical proposals of how bottom-up
and top-down signals could jointly define perceptual processes
[55,95], the rigorous functional integration of spontaneous activity
in such a framework has emerged only recently [53].

Figure I. Characteristics of cortical spontaneous activity. (a) There is a significant correlation between the orientation map of the primary visual cortex of anesthetized
cat (left panel), optical image patterns of spontaneous (middle panel) and visually evoked activities (right panel) (adapted with permission from [66]). (b) Correlational
analysis of BOLD signals during resting state reveals networks of distant areas in the human cortex with coherent spontaneous fluctuations. There are large scale
positive intrinsic correlations between the seed region PCC (yellow) and MPF (orange) and negative correlations between PCC and IPS (blue) (adapted with permission
from [98]). (c) Reliably repeating spike triplets can be detected in the spontaneous firing of the rat somatosensory cortex by multielectrode recording (adapted with
permission from [91]). (d) Spatial correlations in the developing awake ferret visual cortex of multielectrode recordings show a systematic pattern of emerging strong
correlations across several millimeters of the cortical surface and very similar correlational patterns for dark spontaneous (solid line) and visually driven conditions
(dotted and dashed lines for random noise patterns and natural movies, respectively) (adapted with permission from [64]).
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Preliminary Work:
Statistical Inference?

• 2 input words: 
„AXXXXXM“ (75%), 
„BXXXXXN“ (25%)

• readout trained to predict `M´ 
vs. `N´

• test: instead of `A´ or `B´, show 
mixtures of the two, e.g., 
20% `A´ and 80% `B´

M

N

A X M …

…AXXXXXMBXXXXXNAXXXXXMAXXXXXMBXXXXXNAXXXXXMAXXXXXMAXXXXXM…
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Fig. 3. Classification performance for the direction of motion of a readout trained on

visual and auditory information (left) or only visual information (right). During test,

the visual input is bistable while the auditory input is informative.

4.3 Prediction cues

Inputs are two randomly alternated sequences of symbols: AXXXXXM and

BXXXXXN . Symbols A and B cue the network for the later apearance of

M and N respectively, following a 6 time steps delay. Networks are shaped

by plasticity, while presented with these two cue associations for 50000 steps.

Sequence BXXXXXN is presented three times more often during learning.

Based on 5000 steps of activity, a linear readout is trained to map the net-

works recurrent activity to the incoming input M or N. During the test phase

the network is presented with mixtures of the two cues (e.g 80% cue A, 20% cue

B). These mixtures correspond to the number of input neurons which receive

external drive for each of the two input populations (e.g. 8 input neurons out of

10 for A, versus 2 input neurons out of 10 for B) .

In Figure 4, we contrast the behaviour of random reservoirs to that of SORNs.

In the case of SORNs the output drive projected towards the predicted symbols

M and N is strongly biased by the prior information. As a result, the network’s

Fig. 4. Random networks are compared to SORNs on a prediction task. The figure

shows the mean network output drive, over 10 runs, while the network is presented

with mixtures of two learned cues. For SORNs, the output relies more strongly on cue

B, which was presented three times more often during plastic self-organization.

network combines ambiguous A/B input
with prior information for prediction 



Discussion

Storing Bayesian Priors via Cortical Plasticity 7

Fig. 3. Classification performance for the direction of motion of a readout trained on

visual and auditory information (left) or only visual information (right). During test,

the visual input is bistable while the auditory input is informative.

4.3 Prediction cues

Inputs are two randomly alternated sequences of symbols: AXXXXXM and

BXXXXXN . Symbols A and B cue the network for the later apearance of

M and N respectively, following a 6 time steps delay. Networks are shaped

by plasticity, while presented with these two cue associations for 50000 steps.

Sequence BXXXXXN is presented three times more often during learning.

Based on 5000 steps of activity, a linear readout is trained to map the net-

works recurrent activity to the incoming input M or N. During the test phase

the network is presented with mixtures of the two cues (e.g 80% cue A, 20% cue

B). These mixtures correspond to the number of input neurons which receive

external drive for each of the two input populations (e.g. 8 input neurons out of

10 for A, versus 2 input neurons out of 10 for B) .

In Figure 4, we contrast the behaviour of random reservoirs to that of SORNs.

In the case of SORNs the output drive projected towards the predicted symbols

M and N is strongly biased by the prior information. As a result, the network’s

Fig. 4. Random networks are compared to SORNs on a prediction task. The figure

shows the mean network output drive, over 10 runs, while the network is presented

with mixtures of two learned cues. For SORNs, the output relies more strongly on cue

B, which was presented three times more often during plastic self-organization.
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point in more detail. To this end, we summed the neurons’ responses 
for each of the eight locations of the visual space irrespective of 
motion direction or occluder presence. The neuron in (Figure 4E) 
responded unselectively to all eight locations before any plasticity 
(static reservoir case, blue squares) and after  learning it has devel-
oped a clear preference for location 4 (SORN case, green circles). 

The neuron in (Figure 4F) was silent in the initial network setup 
(static reservoir case). Through plasticity, it developed selectivity for 
locations 3 and 7 (SORN case). Interestingly, this selectivity is also 
specifi c with regard to motion direction. The neuron fi res when a 
stimulus is at location 3 moving to the right, or when the stimulus 
is at location 7 moving to the left (not shown).
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FIGURE 3 | (A) Result of hierarchical clustering of the internal representation of 
a static random reservoir. Only a single stage with 20 clusters is shown. For 
each of the 20 clusters, a histogram depicts the different input conditions that 
contributed to the cluster. Clusters tend to mix many distinct input conditions, 
especially different repetitions of ‘b’ or ‘d’, instead of keeping them separate. 
(B) Histogram showing how many different input conditions contribute to each 
of the 20 clusters. (C) Result of PCA on the pseudo state x' corresponding to 
the last six letters of the input sequence ‘eddddddddf’ which we refer to as ‘d4’, 
‘d5’, ‘d6’, ‘d7’,‘d8’ and ‘f’. Identical input conditions are spread far apart and 

strongly overlap with other input conditions. (D) The amount of variance 
explained by the fi rst principal components. (E–H) Same as (A–D) but for 
SORNs. (E) The cluster structure in SORNs refl ects the different input 
conditions. (F) Representations of different inputs are comparatively distinct 
such that only one or two input conditions contribute to each cluster. (G) In 
PCA space, the different input conditions form compact clusters that are well 
separated for different input conditions. (H) Most of the variance is captured by 
only the fi rst few principal components, suggesting more orderly dynamics in 
the SORNs.
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3 Spontaneous activity in SORNs matches the statistics

of the inputs

In previous work we have shown that SORNs develop spatio-temporal represen-

tations of structured stimuli which allows them to perform better than random

networks on prediction tasks. In the following, we show that the network’s in-

ternal representations also match the input statistics, so that if certain input

sequences are presented more often than others they gain stronger influence on

the network’s dynamics. In this section, we compare periods of spontaneous ac-

tivity before and after learning, and show that the latter faithfully reflects the

structure and frequency of stimulation.

Our inputs are random alternations of two sequences of letters, ABCD and

MNOP, where the second sequence is presented two times more often or three

times more often than the first, during 50000 steps of network self-organization

with plasticity. Evoked responses for SORNs are modulated by STDP, SN and

IP. We condition synaptic learning to the periods containing input stimulation.

In the absence of inputs, we analyse spontaneous activity in the presence of

IP, but in the absence of synaptic learning. During spontaneous activity, the

homeostatic nature of intrinsic plasticity restores stable activity rates within

2000 time steps.

Fig. 1. Result of PCA on the network’s internal representations (a). Distribution of

spontaneous states for random networks in the absence of plasticity (b). Distribution

of spontaneous states similar to the evoked responses to different input letters, when

MNOP is presented two times more often (c) or three times more often (d) than

ABCD during plastic self-organization. Divergence between the distributions of evoked

and spontaneous activity as a function of plastic self-organization (e).



Reservoir Computing
• class of recurrent neural network architectures utilizing a 

„reservoir“ with fixed random connectivity (review: Lukosevicius 
& Jaeger, 2009)

• examples: Echo State Neworks (Jaeger, 2001); Liquid state 
machines (Maas et al., 2002)

• fading memory property, separation property
C O M P U T E R S C I E N C E R E V I E W 3 ( 2 0 0 9 ) 1 2 7 – 1 4 9 129

Fig. 1 – A. Traditional gradient-descent-based RNN training methods adapt all connection weights (bold arrows), including
input-to-RNN, RNN-internal, and RNN-to-output weights. B. In Reservoir Computing, only the RNN-to-output weights are
adapted.

Biological plausibility. Numerous connections of RC
principles to architectural and dynamical properties
of mammalian brains have been established. RC (or
closely related models) provides explanations of why
biological brains can carry out accurate computations
with an “inaccurate” and noisy physical substrate [22,23],
especially accurate timing [24]; of the way in which visual
information is superimposed and processed in primary
visual cortex [25,26]; of how cortico-basal pathways
support the representation of sequential information; and
RC offers a functional interpretation of the cerebellar
circuitry [27,28]. A central role is assigned to an RC
circuit in a series of models explaining sequential
information processing in human and primate brains,
most importantly of speech signals [13,29–31].
Extensibility and parsimony. A notorious conundrum of
neural network research is how to extend previously
learned models by new items without impairing or
destroying previously learned representations (catastrophic
interference [32]). RC offers a simple and principled solution:
new items are represented by new output units, which
are appended to the previously established output units
of a given reservoir. Since the output weights of different
output units are independent of each other, catastrophic
interference is a non-issue.

These encouraging observations should not mask the
fact that RC is still in its infancy, and significant further
improvements and extensions are desirable. Specifically, just
simply creating a reservoir at random is unsatisfactory. It
seems obvious that, when addressing a specific modeling
task, a specific reservoir design that is adapted to the task
will lead to better results than a naive random creation. Thus,
the main stream of research in the field is today directed
at understanding the effects of reservoir characteristics on
task performance, and at developing suitable reservoir design
and adaptation methods. Also, new ways of reading out
from the reservoirs, including combining them into larger
structures, are devised and investigated. While shifting from
the initial idea of having a fixed randomly created reservoir
and training only the readout, the current paradigm of
reservoir computing remains (and differentiates itself from
other RNN training approaches) as producing/training the
reservoir and the readout separately and differently.

This review offers a conceptual classification and a
comprehensive survey of this research.

As is true for many areas of machine learning, methods in
reservoir computing converge from different fields and come

with different names. We would like to make a distinction
here between these differently named “tradition lines”, which
we like to call brands, and the actual finer-grained ideas on
producing good reservoirs, which we will call recipes. Since
recipes can be useful and mixed across different brands, this
review focuses on classifying and surveying them. To be fair,
it has to be said that the authors of this survey associate
themselves mostly with the Echo State Networks brand, and
thus, willingly or not, are influenced by its mindset.

Overview.We start by introducing a generic notational frame-
work in Section 2. More specifically, we define what we mean
by problem or task in the context of machine learning in Sec-
tion 2.1. Then we define a general notation for expansion
(or kernel) methods for both non-temporal (Section 2.2) and
temporal (Section 2.3) tasks, introduce our notation for re-
current neural networks in Section 2.4, and outline classical
training methods in Section 2.5. In Section 3 we detail the
foundations of Reservoir Computing and proceed by naming
the most prominent brands. In Section 4 we introduce our
classification of the reservoir generation/adaptation recipes,
which transcends the boundaries between the brands. Fol-
lowing this classification we then review universal (Section 5),
unsupervised (Section 6), and supervised (Section 7) reservoir
generation/adaptation recipes. In Section 8 we provide a clas-
sification and review the techniques for reading the outputs
from the reservoirs reported in literature, together with dis-
cussing various practical issues of readout training. A final
discussion (Section 9) wraps up the entire picture.

2. Formalism

2.1. Formulation of the problem

Let a problem or a task in our context of machine learning be
defined as a problem of learning a functional relation between
a given input u(n) ∈ RNu and a desired output ytarget(n) ∈ RNy ,
where n = 1, . . . ,T, and T is the number of data points in
the training dataset {(u(n),ytarget(n))}. A non-temporal task is
where the data points are independent of each other and the
goal is to learn a function y(n) = y(u(n)) such that E(y,ytarget)

is minimized, where E is an error measure, for instance, the
normalized root-mean-square error (NRMSE)

E(y,ytarget) =

�������

����y(n) − ytarget(n)
���
2
�

����ytarget(n) −
�
ytarget(n)

����
2
� , (1)

where �·� stands for the Euclidean distance (or norm).
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