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A message from a neuron

We have established several 
methods for optimizing rate 
estimators:

1.PSTH --- 2007
2.Kernel smoother --- 2010
3.Bayesian inference --- 2005, 2009
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PSTH
Spike Sequences

PSTH
Peri-Stimulus Time Histogram

3

number of spikes / binsize

Time dependence may be depicted. 
But…

Multiple interpretations: Which is a likely 
message ?
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Optimizing time histograms
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Shimazaki and Shinomoto, Neural Comput. (2007) 19: 1503-1527.

Hideaki Shimazaki
Mean Integrated Squared Error

PSTH 1

underlying rate

spike data

PSTH 2

PSTH 3

rigorous inference
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RECIPE

Shimazaki and Shinomoto, Neural Comput. (2007) 19: 1503-1527.

Rule is simple:



6

Kernel optimization
Hideaki Shimazaki

Shimazaki and Shinomoto, J. Comput Neurosci (2010) 29:171-182.
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RECIPE

Shimazaki and Shinomoto, J. Comput Neurosci (2010) 29:171-182.

Rule is fairly simple:

Most downloaded articles in 90 days (Mar. 3, 2011)
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Bayesian inference

Rate

Spikes

Inverse probability = Bayes

Shimokawa & Shinomoto, Neural Computation (2009) 21:1931-1951.

Takeaki Shimokawa
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Poissonian assumption

Well done! Our rate estimation 
algorithms are derived rigorously. 

However, they are all based on 
Poissonian assumption.

We should test Poissonian. 
But how can we do it?

poisson
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Capture non-Poissonian

Rescale the time axis!

How do we test Poissonian? 

Bermann (1982)
Ogata (1988) ~ seismology
Reich, Victor & Knight (1998)
Oram, Wiener, Lestienne & Richmond (1999) 
Barbieri, Quirk, Frank, Wilson & Brown (2001) 
Smith & Brown (2003) 
Koyama & Shinomoto (2005) 
Shimokawa & Shinomoto (2009)
Shimokawa, Koyama & Shinomoto (2010)



Estimate non-Poisson feature
How to
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(1) Conjecture a time-dependent rate.
(2) Rescale the time axis with this rate.

(3) Conjecture an inter-spike interval distribution.
Non-Poisson: regular

(4) Estimate the likelihood.
Repeat (1) - (4) to search for the maximum likelihood.
>>> Obtain (non-Poisson feature & rate revised).

Poisson: random

Non-Poisson: bursty

Non
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Bayesian interpretations

Koyama & Shinomoto, J. Phys. A (2005) 38: L531-L537.

marginal likelihood
Shinsuke Koyama

For a single spike train, two interpretations arise.

One interpretation is selected according to statistical plausibility.

~ regularly derived from a fluctuating rate

~ irregularly derived from a constant rate

Irregular
intervals

Regular
intervals
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Bayesian inference

Shimokawa & Shinomoto, Neural Computation (2009) 21:1931-1951.

Takeaki Shimokawa

rate

regularity

estimated
rate

estimated
regularity

spike train 

Estimating the rate and irregularity instantaneously.
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Benefit

1. Characterize non-Poissonian feature.

2. Improve the firing rate estimation by 
taking account of the non-Poissonian 
feature.
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Lv is doing time-rescaling
Coefficient of Variation, Cv

Cv=1.0

Cv=1.0

Cv=1.0

Local Variation, Lv

Lv=0.1

Lv=1.0

Lv=1.4

regular

random

bursty

instantaneous rate2

cross correlation
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Neuronal firing patterns

Shinomoto, Shima & Tanji, Neural Computation (2003) 15: 2823-2842.

unimodal

bimodal

preSMA
SMA

PF

CMAr

Coefficient of Variation

Local Variation

Neurons are not necessarily the Poisson spike generators.
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Relation to function
Kim, Shimokawa, Matsuno, Toyama

non-Poissonian
characteristics

Shinomoto, Kim, Shimokawa, Matsuno, Funahashi, Shima, Fujita, Tamura, Doi, Kawano, 
Inaba, Fukushima, Kurkin, Kurata, Taira, Tsutsui, Komatsu, Ogawa, Koida, Tanji, & Toyama, 
PLoS Comput Biol (2009) 5:e1000433.

regular random bursty

This is in essence due to the time rescaling operation in Lv, or LvR.
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Structure, function & signal
Korbinian Brodmann
(1868 - 1918)

Monkey cortex

structure function

cytoarchitectonics and cortical functions

signal
firing patterns

1909 vintage !

Shinomoto, Kim, Shimokawa,et al., PLoS Comput Biol (2009) 5:e1000433.

I am a German neurologist. I was born in Liggersdorf, 
and studied medicine in Munich, Würzburg, Berlin and 
Freiburg.
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Cytoarchitecture

PFMM
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Guess what

Lv map of seismology

~random

~bursty

Zhao, Omi, Matsuno, and Shinomoto, New J Phys 12 (2010) 063010.

Zhao, Omi, Matsuno

Again, this is in essence due to the time rescaling operation in
Lv.
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Benefit

Another benefit

1. Characterize non-Poissonian feature.

2. Improve the firing rate estimation by 
taking account of the non-Poissonian 
feature.



22

Rate & irregularity

• In estimating the affection from love 
letters, we take account of the 
punctuality of the sender.

• A spike train should be interpreted 
in terms of a set of (rate & 
regularity) ~ (affection & 
punctuality). 

• No more and no less !

Shimokawa, Koyama & Shinomoto, J. Comput Neurosci (2010) 29:183-191.

Shimokawa, Koyama 
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