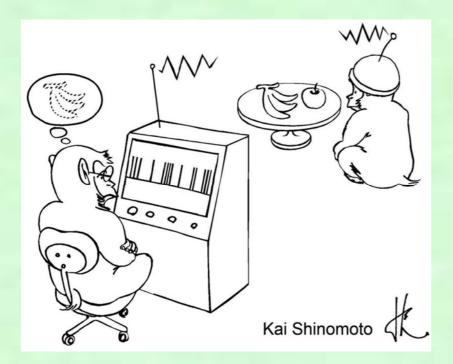
German-Japanese program in computational neuroscience OIST, March 2-5, 2010

Defining the firing rate for a non-Poissonian spike train

--- a nerdish study ---

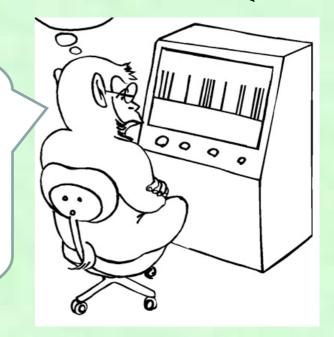
Shigeru Shinomoto Kyoto Univ., Japan

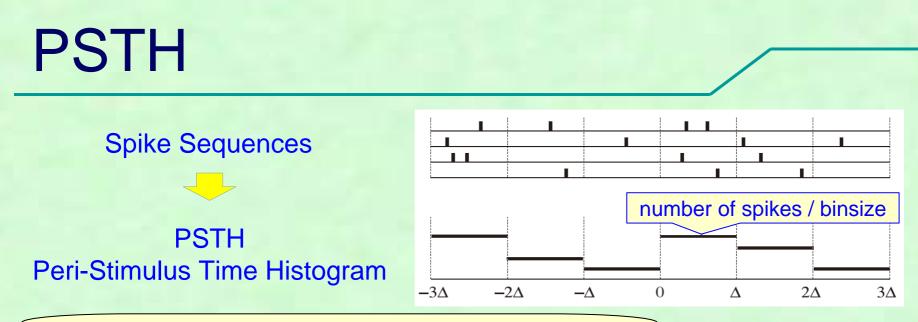


A message from a neuron

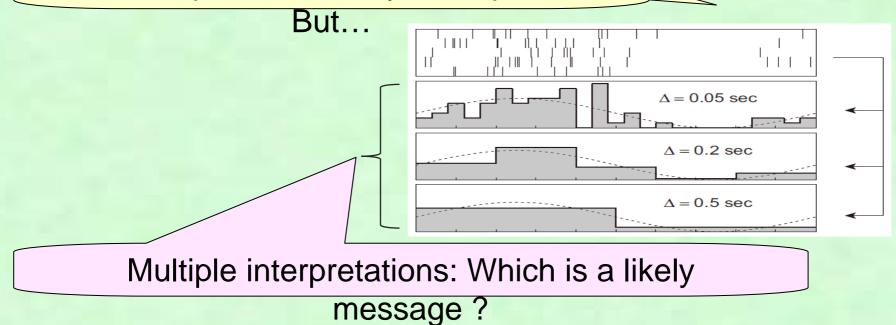
We have established several methods for optimizing rate estimators:

1.PSTH --- 2007 2.Kernel smoother --- 2010 3.Bayesian inference --- 2005, 2009





Time dependence may be depicted.

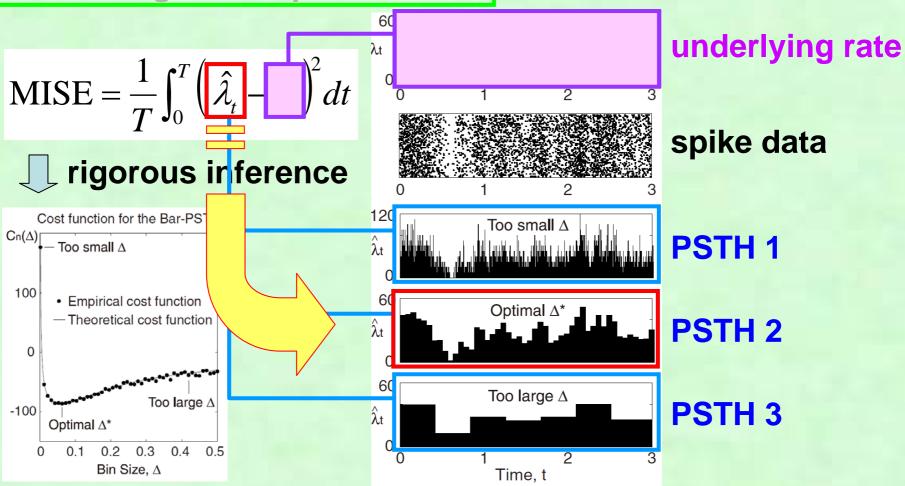


3

Optimizing time histograms

Hideaki Shimazaki

Mean Integrated Squared Error



Shimazaki and Shinomoto, Neural Comput. (2007) 19: 1503-1527.

RECIPE

Rule is simple:

Algorithm 1: A Method for Bin Size Selection for a Bar-PSTH

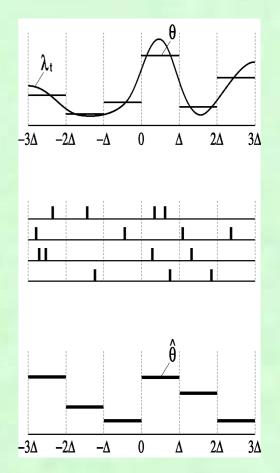
- i. Divide the observation period *T* into *N* bins of width Δ , and count the number of spikes k_i from all *n* sequences that enter the *i*th bin.
- ii. Construct the mean and variance of the number of spikes $\{k_i\}$ as

$$\bar{k} \equiv \frac{1}{N} \sum_{i=1}^{N} k_i$$
, and $v \equiv \frac{1}{N} \sum_{i=1}^{N} (k_i - \bar{k})^2$.

iii. Compute the cost function:

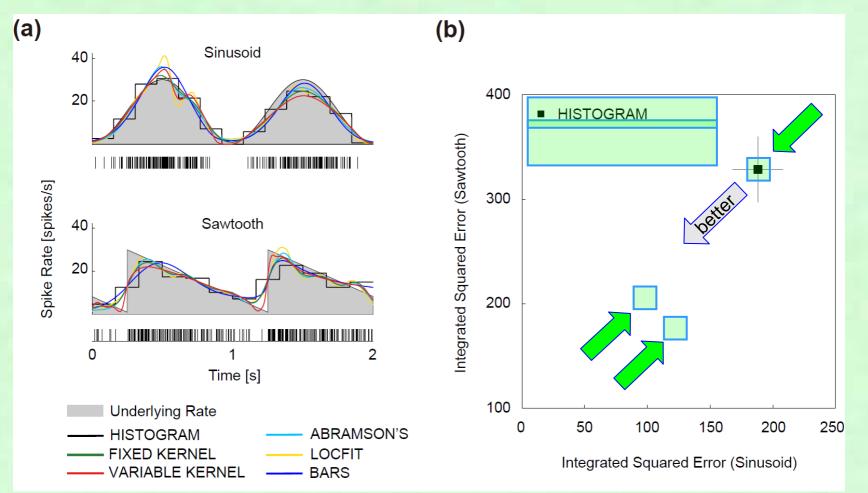
$$C_n(\Delta) = \frac{2\bar{k} - v}{(n\Delta)^2}.$$

iv. Repeat i through iii while changing the bin size Δ to search for Δ^* that minimizes $C_n(\Delta)$.



Shimazaki and Shinomoto, Neural Comput. (2007) 19: 1503-1527.

Kernel optimization



Shimazaki and Shinomoto, J. Comput Neurosci (2010) 29:171-182.

RECIPE

Rule is fairly simple:

Algorithm 1 A method for selecting a fixed kernel bandwidth

- Superimpose *n* spike sequences. Obtain a series of spike times $\{t_i\}_{i=1}^N$, where *N* is the total number of spikes.
- ii Compute the cost function for the bandwidth w of the kernel function $k_w(t)$:

$$C_n(w) = \frac{1}{n^2} \sum_{i,j} \psi_w \left(t_i, t_j \right) - \frac{2}{n^2} \sum_{i \neq j} k_w \left(t_i - t_j \right),$$

where $\psi_w(t_i, t_j) = \int_a^b k_w(t - t_i) k_w(t - t_j) dt^{\dagger}$. Here [a, b] is an interval of interest.

iii Find w^* that minimizes $C_n(w)$.

Most downloaded articles in 90 days (Mar. 3, 2011)

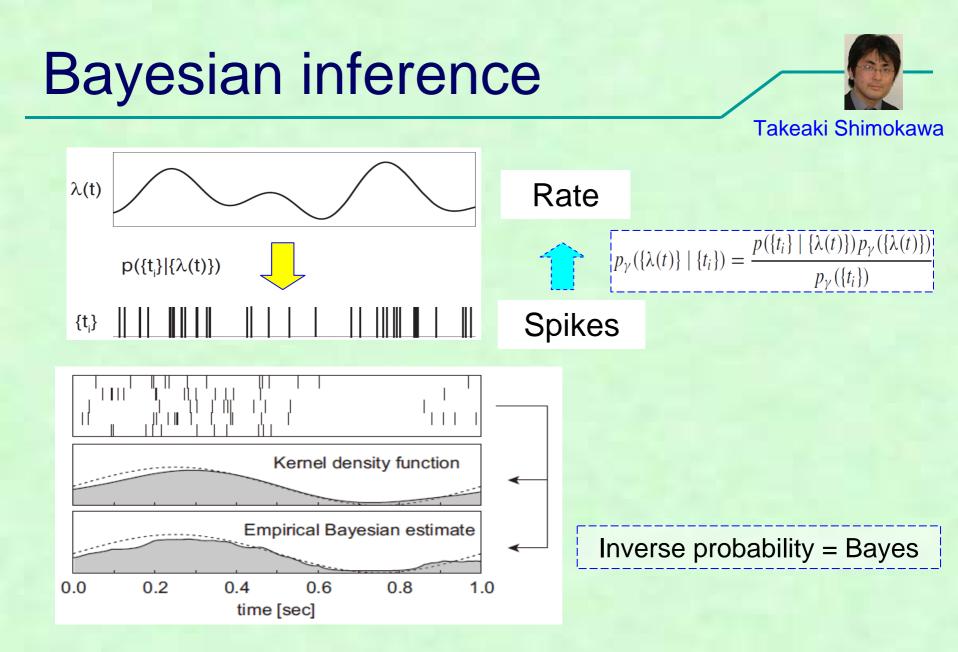
7 days 30 days 90 days

- 862 Kernel bandwidth optimization in spike rate estimation Shimazaki, Hideaki,Shinomoto, Shigeru
- 607 Information theory in neuroscience Dimitrov, Alexander G.,Lazar, Aurel A.,Victor, Jonathan D.
- 554 Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: A multicompartmental model study Komendantov, Alexander O., Trayanova, Natalia A., Tasker, Jeffrey G.

i

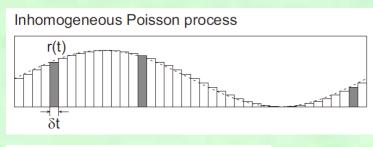
- Increased bradykinesia in Parkinson's disease with increased movement complexity: elbow flexion
 -extension movements
 Moroney, Rachel, Heida, Ciska, Geelen, Jan
- 356 Transfer entropy—a model-free measure of effective connectivity for the neurosciences Vicente, Raul,Wibral, Michael,Lindner, Michael,Pipa, Gordon

Shimazaki and Shinomoto, J. Comput Neurosci (2010) 29:171-182.



Shimokawa & Shinomoto, Neural Computation (2009) 21:1931-1951.

Poissonian assumption



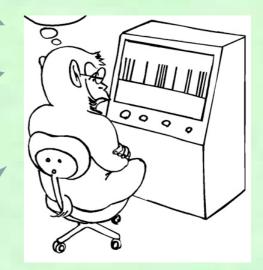
$$p\left(\left\{t_i\right\} \mid r(t)\right) = \left[\prod_{i=1}^{N_s} r(t_i)\right] \exp\left(-\int_0^T r(t)dt\right)$$

poisson

Well done! Our rate estimation algorithms are derived rigorously.

However, they are all based on Poissonian assumption.

We should test Poissonian. But how can we do it?



🖉 Springer

Analysis of Parallel <u>Spike Trains</u>

Stefan Rotter

Capture non-Poissonian

How do we test Poissonian?

Rescale the time axis!

Bermann (1982) Ogata (1988) ~ seismology Reich, Victor & Knight (1998) Oram, Wiener, Lestienne & Richmond (1999) Barbieri, Quirk, Frank, Wilson & Brown (2001) Smith & Brown (2003) Koyama & Shinomoto (2005) Shimokawa & Shinomoto (2009) Shimokawa, Koyama & Shinomoto (2010)

Estimate non-Poisson feature

(1) Conjecture a time-dependent rate.(2) Rescale the time axis with this rate.

How to

Non-Poisson: regular

(3) Conjecture an inter-spike interval distribution.
 (4) Estimate the likelihood.
 Repeat (1) - (4) to search for the maximum likelihood.
 >> Obtain (non-Poisson feature & rate revised).

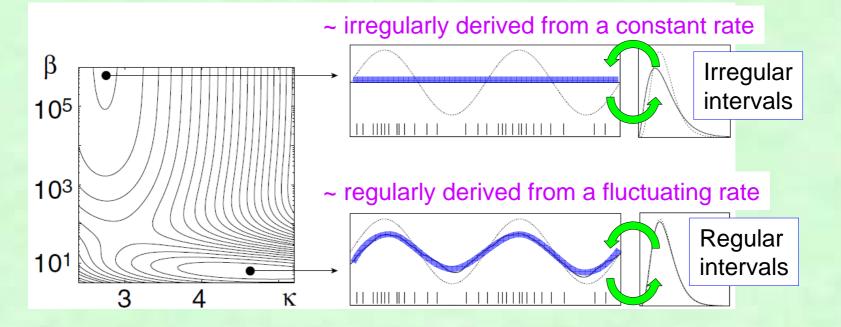
Non-Poisson: bursty 11

Bayesian interpretations

Shinsuke Koyama

marginal likelihood
$$p_{\kappa,\beta}(\{t_i\}_{i=0}^n) = \int p_{\kappa}(\{t_i\}_{i=0}^n | \{\lambda(t)\}) p_{\beta}(\{\lambda(t)\}) d\{\lambda(t)\}$$

For a single spike train, two interpretations arise.



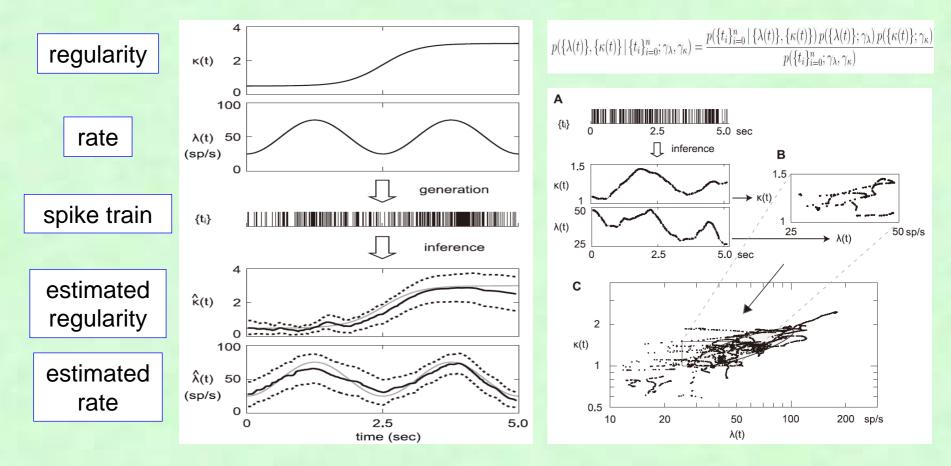
One interpretation is selected according to statistical plausibility.

Koyama & Shinomoto, J. Phys. A (2005) 38: L531-L537.

Bayesian inference

Takeaki Shimokawa

Estimating the rate and irregularity instantaneously.



Shimokawa & Shinomoto, Neural Computation (2009) 21:1931-1951.

Benefit

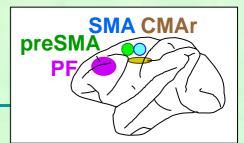
1. Characterize non-Poissonian feature.

2. Improve the firing rate estimation by taking account of the non-Poissonian feature.

Lv is doing time-rescaling

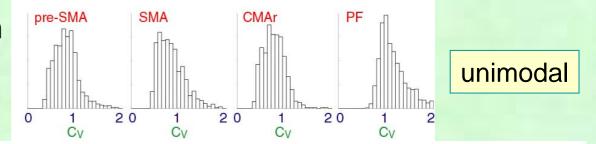
Local Variation, Lv Coefficient of Variation, Cv $Lv = \frac{3}{n-1} \sum_{i=1}^{n-1} \left(\frac{I_i - I_{i+1}}{I_i + I_{i+1}} \right)^2$ $Cv = \Delta I / \overline{I}$ $\left(\frac{I_i - I_{i+1}}{I_i + I_{i+1}}\right)^2 = 1 - \frac{4I_i I_{i+1}}{\left(I_i + I_{i+1}\right)^2} \Rightarrow \text{ cross correlation}$ Lv=0.1 Cv=1.0regular Lv=1.0 random Cv = 1.0Lv=1.4 bursty Cv=1.0

Neuronal firing patterns



Coefficient of Variation

 $Cv = \Delta I / \overline{I}$

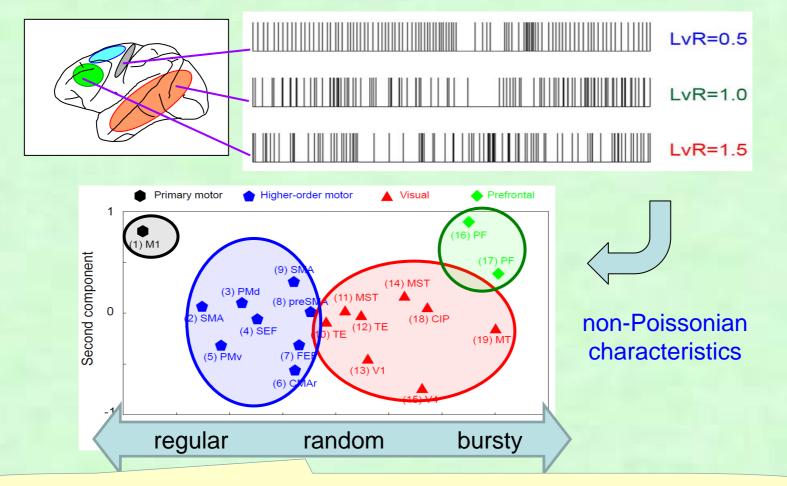


Neurons are not necessarily the Poisson spike generators.

Shinomoto, Shima & Tanji, Neural Computation (2003) 15: 2823-2842.

Relation to function

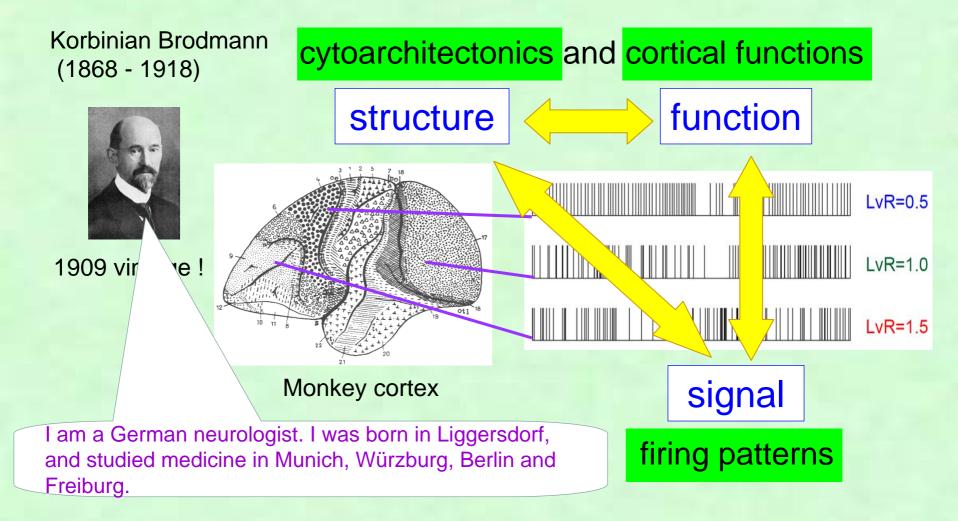
Kim, Shimokawa, Matsuno, Toyama



This is in essence due to the time rescaling operation in Lv, or LvR.

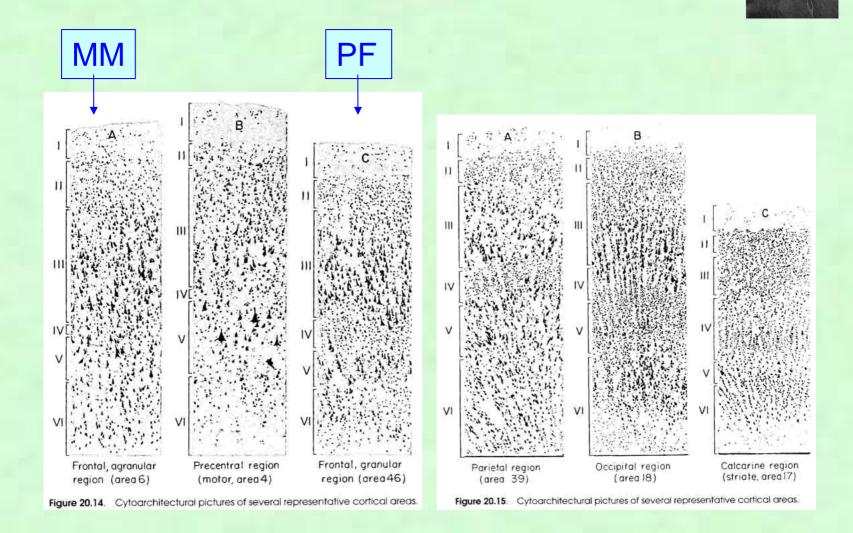
PLoS Comput Biol (2009) 5:e1000433.

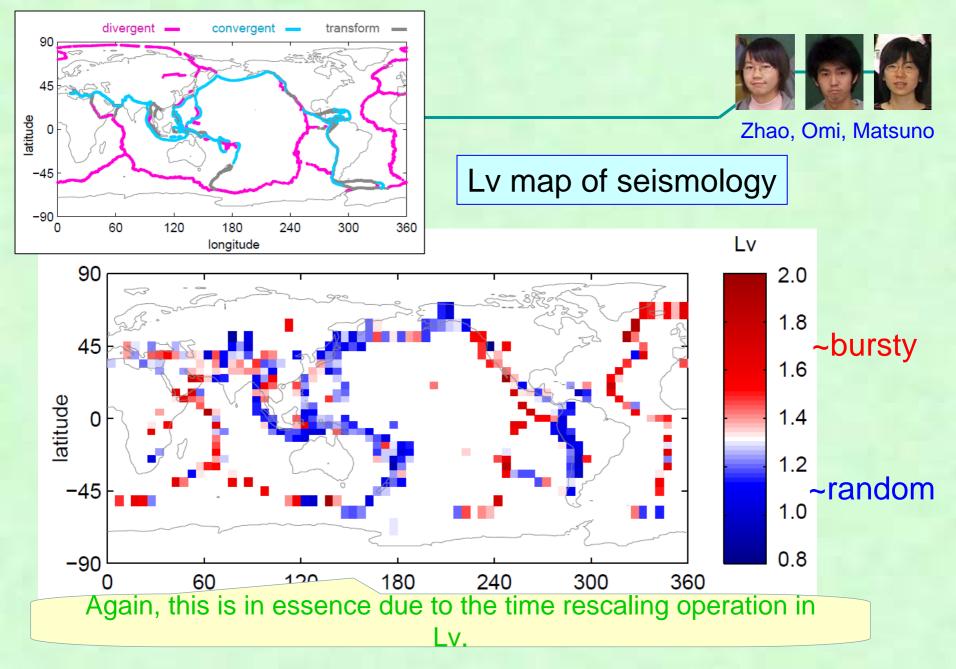
Structure, function & signal



Shinomoto, Kim, Shimokawa, et al., PLoS Comput Biol (2009) 5:e1000433.

Cytoarchitecture





Zhao, Omi, Matsuno, and Shinomoto, New J Phys 12 (2010) 063010.

1. Characterize non-Poissonian feature.

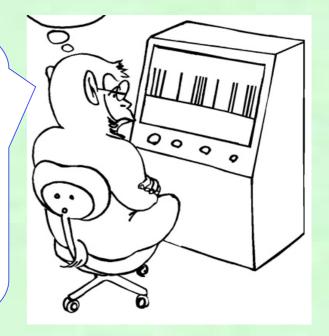
2. Improve the firing rate estimation by taking account of the non-Poissonian feature.

Another benefit

Rate & irregularity

Shimokawa, Koyama

- In estimating the affection from love letters, we take account of the punctuality of the sender.
- A spike train should be interpreted in terms of a set of (rate & regularity) ~ (affection & punctuality).
- No more and no less !



Shimokawa, Koyama & Shinomoto, J. Comput Neurosci (2010) 29:183-191.