p A

i ICL

Business Informatics Group

- Vienna University of Technology -

State of the Art and Future Directions in
Model Management Research

Japan-Austria Joint Workshop on ICT, October 18-19, 2010

‘ Gerti Kappel

Business Informatics Grou

@) 7 _ b |

. Institute of Software Technology and Interactive Systems

Vienna University of Technology
FavoritenstrafRe 9-11/188-3, 1040 Vienna, Austria
phone: +43 (1) 58801-18804 (secretary), fax: +43 (1) 58801-18896
office@big.tuwien.ac.at, www.big.tuwien.ac.at

Introduction >Jlodel Versioning >Iodel Co-Evolution)ésumé >

Content

= |ntroduction
= Model-Driven Engineering and Model Management

= Model Management Use Case |: Model Versioning

= Model Management Use Case II: Model Co-Evolution

Vd

= Résumé

Introductio odel Versioning >Iodel Co-Evolution >ésumé >

Content

= Introduction
= Model-Driven Engineering and Model Management

= Model Management Use Case |: Model Versioning

= Model Management Use Case II: Model Co-Evolution

Vd

= Résumé

Model-Driven Engineering (MDE)
Models, Models, Models, ...

"Everything Is a model"

= Analysis Model

= Transformation Model = Metamodel

= Design Model = Weaving Model

= Diff Model = Metametamodel
= Test Model
= Change Model .
B,lﬁ Jean Bézivin. On the Unification Power of Models. Software and System Modeling 4(2), 9
YRR pages 171-188, 2005. 4

Model-Driven Engineering (MDE)
Models, Models, Models, ...

Mapping Feature A model is based on an original (=system)

Reduction Feature A model only reflects a (relevant) selection
of an original‘s properties

Pragmatic Feature A model needs to be usable in place of an

original with respect to some purpose

Herbert Stachowiak. Allgemeine Modelltheorie. Springer, Wien, 1973.

X

Model-Driven Engineering (MDE)
Building Block #1: Metamodeling

M eta‘ defines p M eta'
Metamodel Language

T

g g;\\’\%v

p‘esse

Metamode] * ’ .

Language

A
2 ‘ ' ﬂ
c 1 A0\
g : essed v
£ et
represents p
Model System
Blﬁ Thomas Kihne. Matters of (Meta-)Modeling. Software and System Modeling 5(4),
XK})’(W pages 369-385, 2006.

Model-Driven Engineering (MDE)

Building Block #2: Model Transformations

Metamode@ ,

reads
Model

Transformatio
‘ '- ||Ca 0N

............ > Metamodel

’YOf

aexecutes }

«instanceOf»
____________________>

Krzysztof Czarnecki, Simon Helsen. Feature-based survey of model transformation approaches.
IBM Systems Journal 45(3), pages 621-646, 2006.

)

Model-Driven Engineering (MDE)
Building Block #3: Model Management

"Everything is a model"

-

"No model is an island"

_ = abstractionOf = sameAs
= InstanceOf

= generatedFrom = equivalentWith

= overlappingWith

= refinementOf .
= crossCuttingWith

Model-Driven Engineering (MDE)
Building Block #3: Model Management

Model of "No model is an island”

0..*
\dependencies

Model

2
@)

xn
—]

Model Management

Old wine in new bottles?

= Origin: Data Engineering
= Research issue for decades since integration of heterogeneous
databases (1970)

= Current Status: Model Man agem ent 2.0 P. Bernstein, S. Melnik. Model Management 2.0:
. -y Manipulating Richer Mappings.
= Well-documented kinds of heterogeneities' Acwm sSIGMOD 2007 Keynote, China, June 2007.
» Global Model Management Operators
= Diff, Merge, Match, Compose, ModelGen, TransGen, Inverse, ...

= Much progress, but still many challenges

= Ongoing Work: Model Management 3.0 =
Model Management 2.0 + Model Engineering
= Raising the level of abstraction
= Too many data models, formats, technologies, tools, ...
= Built on top of powerful model engineering technologies

a1 10 J

Model Management

Old wine in new bottles?

Data Engineering

Model Engineering

@ 7

No explicit formalism > \

MOF

M3
M2 Relational XM LSchema\
DataModel DataModel
- .
I | : 1 : [. ,' .
M1 aRelational <:> anXMLSchema
Model Model
'r? K
MO

= A

Legend

<:> Correspondences

:> Transformation

Model Management in a Nutshell

= Model Management 2.0

= Predefined set of generic operators
= Act upon models and produce models

= Limited set of model types
= Models and Maps

= Model management scripts
= Composition of given model management operators

1. Extensions for Model Management 3.0
= Scripts are object-oriented programs
= Models are typed based on their metamodels
= QOperators are tied to metamodels
= Qperators expect typed models as input and produce typed models as

OUtpUt
Thomas Reiter, Kerstin Altmanninger, Werner Retschitzegger. Think Global, Act Local:
B/!ﬁ Implementing Model Management with Domain-Specific Integration Languages.
XK})(HX Revised Selected Papers of Workshops and Symposia at MoODELS 2006, Springer LNCS 4363, 12 f/

pages 263-276, 2007.

Model Management

Motivating example: Exogenous merge

Ecore ,Exogenous Merge“ Script

N

| Ecore A =
T SEREEE R : o Ecore B =
I merge ! Model a =

> 2] . o Model b = ..

A [| B E — -
_ 1T A @ Ecore AB = A.merge(B);
: \eFuIIEquw FuIIqu/‘uw : © FullEquiv mapa = AB.FE_match(A);
| AB i Ful lEquiv mapb = AB.FE_match(B);

@ Transformation t,= mapa.genTrafo();
Transformation t, = mapp-genTrafo();

©-©
o Wi
@9

al:>a'Tb'<}:l bo AB b' zb.tb();

G AB a a-ta();
® AB ab' = a' -merge(b);
ab' /

Bl 13

Introduction ol [V ol Tals B odel Co-Evolution >Résumé >

Content

Introduction
= Modeling, Model-Driven Engineering, and Model Management

Model Management Use Case |. Model Versioning

Model Management Use Case II: Model Co-Evolution

= Résumeé

Model Management Use Case I: Model Versioning

Motivation

= Some definitions of Software Engineering (SE)

= SE is defined as the multi-person construction of multi-version software
— David Lorge Parnas

= SE deals with the building of software systems that are so large or so complex

that they are built by teams of engineers
— Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli

= Implication for Model Engineering: Models must be built in teams!

Sally

Front End |

Badk End

[Front End

Version 0 Version 1
I \ Z Precise Conflict Detection
Chedk Out CheckIn
N
I P —] c
o 4 = +J g
i) o2\uvus
1 | | g)ES)E2
€ /S88/3 Y
S of =«
Model Repaository
Check Out
) . . .
I _________ «%; 7 Supportive Conflict Resolution
Version 0
t t 5

The Model Versioning Process Revised

VO+VO" T ool

o
V1
SRA°
BliG
K

Example 1. Contradicting Change

Person
Person Person
5 getName()

Example 2: Equivalent Change

Person

Person

Employev

Example 2: Equivalent Change

Harder than we thought!?

UML Metamodel V1

UML Metamodel V2

X

[
2 Class
0..* name:Strin
£ Class < :
S _ superClasses superClass | 1..1 1..*’| subClasses
O name:String
=
01, 02 | ol.id = 02.id Generalization
0l € Class, 02 € Class | ol.name = 02.name
cl:Class cl:Class cl:.Class [< cl.Class
fu')\ name=“Person* name="“Person" name="Person* name="Person*
<
< gl:Generalization|| |g2:Generalization
©
o
= c2:Class c3:Class c2:Class c3:Class
name="Employee*“ name="Employee*“ name="Employee”“ |< name=“Employee*
Sally |Harry Sally|Harry
n Person Person
@)
N—’
E ‘
©
o
> Employee/ Employee x/

Example 3: Syntactic Inconsistency

Car

has

Car

Car

-ngine

Engine

The AMOR Approach

Overview

IAMOR

Adaptable Versioning
Framework

Front End |

Sally

Back End

Adaptable Model Versionin

www.modelversmnlng.org

Precise Conflict Detection

AVE 4 8
5)ED)ES
Q o
E cQ UE
Check Out CheckIn
E I ___________ 7/ J I\‘ Supportive Conflict Resolution
ue- <
. Version 0 Version 2
t 4 5

XKY'W 161, pages 221-236, 2010

Gerti Kappel et al. Adaptable Model Versioning in Action. In Proc. of Modellierung 2010, GlI, LNI X
21

Versioning Example

State-based and generic merging

-

VO

‘%‘ Idle

\{¢)

Idle

lift

hang_up

s
®

Active \

DialTon

a
H dial

Dialing

o

dial

J

hang_up
lift DialTon
[=
dial
hang_up .
Dialing
dial
a‘ V0" cancel
lift
@ e DrarTon
e
dial
cancel o
cancel Dialing
dial
Connect valid

bw

Versioning Example

State-based and generic merging

VO hang_up
. (™ 1die lift Dlap on
dial
state-based hang_up -
dlﬂ: = Dialing
dial
VO’ VO’ cancel
if / Active \ al ﬁ
‘%‘ Idle P lif DialTon
‘ > DialTon ‘ Idle
A hang_up e Update/ Update I pdia|
' V% dial cancel e
. cancel Dialing
f ~~~~~~~ Dialing i
) dial
dial t -
Delete|/ Update valid
V1
- lft / Active \
naive P Idle ‘ [DialTon
merge cancel s
l/—l dial
cancel

Dialing
XBKsA!X&H; Connect valid \ diyx 23 X

Versioning Example

State-based and generic merging

VO
hang_up
Refactoring: & P Idle ak vialton Atomic changes:
-Introduce Composite State — -Addition “Connect”
dial -Rename of “hang_up”s
hang_up Y
Dialing
dial
VO’ _ VO cancel
It / Active \
‘ S| lif
/\Idle P DialTon Idle Dlap on
han&up e Update|/ Update I dial
' F’dlal
| e Dialin
Dialing cance J ,
1 _ dial
dial t :
Delete|/ Update valid
V1
lft / Active \
. > dle ‘_9 DialTon
cancel =
\l/—ldial
cancel
Dialing
B’!ﬁ Connect dial -
Yo AN y 24

Versioning Example

Operation-based and refactoring-aware merging

VO

hang_up
lift Dial
Idle o Atomic changes:
-Addition “Connect”
hang_up — -Rename of “hang_up”s
Dialing
dial
cancel
| lift DialTon
& p 8¢
dial Refactoring:
cancel . -Introduce Composite State
cancel Dialing
dial
Connect valid
lift / Active \
‘%‘ Idle . [DialTon
[=)
cancel dial
valid . dial
Dialing
B,lﬁ Connect
] NG

v

Versioning Example

Operation-based and refactoring-aware merging

VO hang_up
. [ide lift Dlap on

. dial
operation-based hang. up n

dl ff = Dialing

dial
VO’ VO cancel
It / Active \ a‘ _ ﬁ
‘%‘ \dle ‘ > DialTon P Idle i Dlap on
hang_up £ - dial
v dial cancel Diali
Dialing cancel g dial
ia
dial
\ '/ Connect [< g
V1
) lift / Active \
refactoring- ‘% dle ‘_9 DialTon
aware merge — il
valid Dialing dial

Blﬁ Connect g

Summary: Status Quo in Model Versioning Research

Implicit Explicit Community
Knowledge Knowledge Knowledge

e e
T

»Pre-Knowledge«

= Few initial approaches

= No common terminology

= No common problem definition

= No exactly formulated research goals

= No test cases for comparison of model versioning systems

Bl\ﬁ Gerti Kappel et al. Why Model Versioning Research is needed!?. In Proc. of the Joint MODSE- 27 -
K)f(ﬂ)(MCCM Workshop @ ModELS'09, 2009.

Introduction >Mode| Versioning elele] Co-Evqutionm

Content

* |ntroduction
= Model-Driven Engineering, and Model Management

= Model Management Use Case |I: Model Versioning
= Model Management Use Case Il: Model Co-Evolution

= Résumeé

Model Management Use Case II: Model Co-Evolution

Motivation

Term “Co-Evolution” borrowed from Biology

= Biological co-evolution is the change of a biological entity triggered by
the change of a related entity

= One-to-one Relationships: Predator/Prey, Host/Symbiont, Host/Parasite, ...

= Diffuse Relationships: An entity evolves in response to a number of other
entities, each of which is also evolving in response to a set of entities

Co-Evolution in MDE

= Co-evolution is the change of a model triggered by the change of a
related model

= Current View A
= Relationship: r(a,b) O

a—a ! l

b b |r@,b) @ A 5
= Challenge: Relationship Reconciliation

= Current research focus is on one-to-one relationships

a1 20 Jf

Metamodeling Level

Metamodels are the central artefacts

Textual
Concrete Syntax

Graphical Concrete
Syntax

Model 2 Model
Transformations TN~ . g
R N %
~ 3
_| Metamodel (¢-------- Models
Model 2 Code -7 K N
Transformations i *
// \\
/, \\
/// \\
/ \
/ \\
Simulators OCL Constraints
BiG .
WO 30

Metamodeling Level

Only models, i.e., instances of metamodels, are currently co-evolved!

Textual

Graphical Concrete

Concrete Syntax Syntax
\\ II
\\ II
\\ II
\\ ,
Model 2 Model |
Transformations T~a . . g
S~ Al %
A
_| Metamodel (¢-------- Models
Model 2 Code | _---""" K N
Transformations , \
// \\
/, \\
/// \\
/ \
/ \\
Simulators OCL Constraints
BIG .
WO 31

Metamodel/Model (Co-)Evolution

Example
Cabple] (o ele]
A rename(B,
D D
Metamodel |p1| | D2 | [p1] [D2]
No
= ‘
o Metamodel A Metamodel A
8
= ,
P S Instance of Metamodel A Instance of Metamodel A
Models
a1 P b1 | A cast(b:B, ot e |
B al: cl:.C
| aZZ: |‘>| % | | a2:A |—>| c2:.C |
Assumption: Renamed Class does not represent a new modeling concept!
B,lﬁ Gerti Kappel et al. On using Inplace Transformations for Model Co-Evolution. In Proc. of the e
XK);f(HX 2nd International Workshop on Model Transformations with ATL (MtATL) @ ICMT’10, 2010. 32

Metamodel/Transformation (Co-)Evolution

Initial example

%
Source |
Metamodel

MMa

Dl BB

Targte
Metamodel

MMb

t, ... Forward Transformation

o

Metamodel/Transformation (Co-)Evolution

Target metamodel evolution

)7)
Source Targte
Metamodel t, Metamodel
MMa MMb v2.0
t Evolution
2
MMb’ v3.0

t, ... Forward Transformation
t, ... Migration Transformation

Metamodel/Transformation (Co-)Evolution

Transformation composition for evolving existing transformations

)7)
Source Targte
Metamodel t, Metamodel
MMa MMb v2.0
{‘9 N > t2 Evolution
é @
MMb’ v3.0

t, ... Forward Transformation
t, ... Migration Transformation

Metamodel/Transformation (Co-)Evolution

First initial results for composing graph transformations

\i

Dl BB

Source Targte
Metamodel t, Metamodel
MMa MMb v2.0
Evolution
{9 AN ; 1:2
é @
MMb’ v3.0
Requirements on t,
(1)Soundness and completeness
(2)Elimination
(3)Transitivity
BIG Manuel Wimmer et al. Towards Transformation Rule Composition. In Proc. of the 4th o
XKX(\& International Workshop on Multi-Paradigm Modeling (MPM) @ MoDELS'10, 2010. 36 X

Modeling Level using UML

Question 1: Are class diagrams in the centre of the development process?

Use Case Diagram

Object Diagram

Activity Diagram |~ \

Composite
Structure Diagram

-
-
-
-
-
-
-
-
- =

S~
~
S~
~

Sequence Diagram

State Diagram

Component
Diagram

OCL Constraints

Modeling Level using UML

Question 1: Are class diagrams in the centre of the development process?

Use Case Diagram

A

Activity Diagram

A

Sequence Diagram

é__

Object Diagram

e m—
\

Class Diagram

Composite
Structure Diagram

S~
~
S~
-~

State Diagram

OCL Constraints

Component
Diagram

Modeling Level using UML

Question 2: Do we have one-to-one relationships or diffuse relationships?

Use Case Diagram

A

Activity Diagram

A

Sequence Diagram

é__

Object Diagram

e m—
\

Class Diagram

Composite
Structure Diagram

S~
~
S~
-~

State Diagram

OCL Constraints

Component
Diagram

Modeling Level using UML

Question 2: Do we have one-to-one relationships or diffuse relationships?

Use Case Diagram

A

Activity Diagram

A

Sequence Diagram

<___

Object Diagram

Composite
Structure Diagram

e m—
\
\

Class Diagram

State Diagram

OCL Constraints

Component
Diagram

Modeling Level using UML

Question 2: Do we have one-to-one relationships or diffuse relationships?

Use Case Diagram

Object Diagram

Activity Diagram

\

Sequence Diagram

—

State Diagram

«component
Change
Propagator

Composite
Structure Diagram

ﬂk

A 4

Component
Diagram

OCL Constraints

Class Diagram

Modeling Level using UML

Question 3: Who is the host and who is the parasite?

= Traditional Database Engineering View
= Use the schema for populating the instances!
= Consequence

= Each change in the Class Diagram has to be propagated to the Object
Diagram

Class Diagram

R e

Object Diagram

2
@)

xn
Sl

Modeling Level using UML

Question 3: Who is the host and who is the parasite?

= Prototype-based Engineering View
= Abstract the schema from the instances!
= Consequence

= Some changes in the Object Diagram have to be to propagated to the
Class Diagram

Object
Diagram
A

Class Diagram

2
@)

xn
Sl

Summary: Status Quo in Model Co-Evolution Research

Implicit Explicit Community
Knowledge Knowledge Knowledge

e e
(]

»Pre-Knowledge«

= Several initial approaches

= Metamodel/model (co-)evolution has been solved for syntactical issues
= Huge number of different co-evolution scenarios

= Often no exactly formulated relationships between models

= No publicly accessible model repositories for studying model co-
evolution

BIG o
il o f

Introduction >Mode| Versioning >Iode| Co-Evolution m

Content

= |ntroduction
= Modeling, Model-Driven Engineering, and Model Management

» Model Management Use Case I: Model Versioning
= Model Management Use Case Il: Model Co-Evolution

= Résumé

Résumé

Model management infrastructure is the prerequisite for tackling evolution issues

= Find a basic set of model management operators
= Diff, Merge, Patch, ...
= Explore variations and properties of these operators

= Extend existing tools with model management capabilities
= Provide a set of predefined operators
= Provide a common programming model for script development

= Based on these scripting languages, provide tool support for
= Versioning, Co-evolution, Merging, ...
= Users should be enabled to adapt predefined scripts

Résumé

Model management: lessons learned

© Provides terminology for evolution concerns

© Allows to reason on a high-level of abstraction

® Variations of operators are a must

® Says nothing about implementation of operators

. Some operators seem to be magical (e.g., match, merge, ...)

' No approved programming model for script development

BIC

WA

=a)

Résumé

Future work needed!

Many research questions remain open in the field of MDE

= What are the most important model management/evolution scenarios?

= What is the sufficient set of model management operators?

= What is an appropriate programming model for model management scripts?
= How to implement model management operators?

= How to verify model management operators?

Is a generic model management approach feasible?

Résumé

Model Management in Model-Driven Engineering — Still enough to do :-!

State of the Art

in MDE 2010
A
CPre—KnowIedge« Implicit D Explicit Community
Knowledge Knowledge Knowledge

Practice of Research
MDE in MDE

m Appropriateness of
some standards = Many different proposals,
guestionable (QVT, application areas and goals
UML2) — not yet = E.g., Model Management,
adopted Mega-Modeling, Runtime

= CASE-tool vendors Models, AOM,
jump on the MDE MDWE, DSM, ...
bandwagon

Thanks to ...

= Petra Brosch

= Horst Kargl

= Philip Langer

* Thomas Reiter

= Werner Retschitzegger
= Wieland Schwinger

= Martina Seidl

= Konrad Wieland

= Manuel Wimmer

= and many more ...

e
<)

50

	State of the Art and Future Directions in�Model Management Research
	Content
	Content
	Model-Driven Engineering (MDE)
	Model-Driven Engineering (MDE)
	Model-Driven Engineering (MDE)
	Model-Driven Engineering (MDE)
	Model-Driven Engineering (MDE)
	Model-Driven Engineering (MDE)
	Model Management
	Model Management
	Model Management in a Nutshell
	Model Management
	Content
	Model Management Use Case I: Model Versioning
	The Model Versioning Process Revised
	Example 1: Contradicting Change
	Example 2: Equivalent Change
	Example 2: Equivalent Change
	Example 3: Syntactic Inconsistency
	The AMOR Approach
	Versioning Example
	Versioning Example
	Versioning Example
	Versioning Example
	Versioning Example
	Summary: Status Quo in Model Versioning Research
	Content
	Model Management Use Case II: Model Co-Evolution
	Metamodeling Level
	Metamodeling Level
	Metamodel/Model (Co-)Evolution
	Metamodel/Transformation (Co-)Evolution
	Metamodel/Transformation (Co-)Evolution
	Metamodel/Transformation (Co-)Evolution
	Metamodel/Transformation (Co-)Evolution
	Modeling Level using UML
	Modeling Level using UML
	Modeling Level using UML
	Modeling Level using UML
	Modeling Level using UML
	Modeling Level using UML
	Modeling Level using UML
	Summary: Status Quo in Model Co-Evolution Research
	Content
	Résumé
	Résumé
	Résumé
	Résumé
	Thanks to …

