
ZDD and its applications
to intelligent processing

Shin-ichi Minato
Graduate School of Information Science and Technology

Hokkaido University, Japan.

Oct. 19, 2010 Shin-ichi Minato 2

Background

BDD-based algorithms have been developed mainly in
VLSI logic design area. (since early 1990’s.)

Equivalence checking for combinational circuits.

Symbolic model checking for logic / behavioral designs.

Logic synthesis / optimization.

Test pattern generation.

Recently, BDDs are applied for not only VLSI design
but also for more general purposes.

Data mining (Fast frequent itemset mining)
[Minato2005,2008,2010]

Computation of Bayesian networks for probabilistic system
analysis.[Minato2007]

Oct. 19, 2010 Shin-ichi Minato 3

BDD (Binary Decision Diagram) [Bryant86]

a

b b

c c c c

0 0 01 1 1 1 1 0 1

a

b

c

1
0

1

0
1

0

Binary decision tree
equivalent to truth table

Reduced Ordered BDD

reduction

Graph representation of Boolean function data.

Canonical form obtained by applying reduction rules
to a binary tree with a fixed variable ordering.

Oct. 19, 2010 Shin-ichi Minato 4

BDD reduction rules

x

f f

(jump)
x

f0 f1

x x

f0 f1

(share)

Gives a unique and compressed representation
for a given Boolean function

under a fixed variable ordering.

Gives a unique and compressed representation
for a given Boolean function

under a fixed variable ordering.

Eliminate all redundant nodes. Share all equivalent nodes.

Oct. 19, 2010 Shin-ichi Minato 5

Effect of BDD reduction rules

O(n)O(2n)

Exponential advantage can be seen in extreme cases.

Depends on instances, but effective for many practical ones.

Oct. 19, 2010 Shin-ichi Minato 6

BDD-based logic operation algorithm

R. Bryant (CMU)

If we generate BDDs from the binary tree:
always requires exponential time & space.
(impracticable for large number of variables)

Innovative BDD synthesis algorithm

Proposed by R. Bryant in 1986.

Best cited paper for many years in EE&CS areas.

BDDBDD

BDDBDD

AND
BDDBDD

A BDD can be constructed from the two operands of BDDs.
(Computation time is linear to BDD size.)

F

G

F and G
(Reduced)

(Reduced)

(Reduced)

Oct. 19, 2010 Shin-ichi Minato 7

Boolean function and combinatorial itemset

Boolean function:
F = (a b ~c) V (~b c)

Combinatorial itemset:
F = {ab, ac, c}

a b c F
0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 1
0 0 1 1
1 0 1 1
0 1 1 0
1 1 1 0

 c
 ab

 ac

Operations of combinatorial itemsets
can be done by BDD-based logic
operations.

Union of sets logical OR

Intersection of sets logical AND

Complement set logical NOT

(customer’s choice)

Oct. 19, 2010 Shin-ichi Minato 8

Zero-suppressed BDD (ZDD) [Minato93]

A variant of BDDs for combinatorial itemets.

Uses a new reduction rule different from ordinary BDDs.

Eliminate all nodes whose “1-edge” directly points to 0-terminal.

Share equivalent nodes as well as ordinary BDDs.

If an item x does not appear in any itemset, the ZDD
node of x is automatically eliminated.

When average appearance ratio of each item is 1%, ZDDs are
more compact than ordinary BDDs, up to 100 times.

x

f f

(jump) x

f f

(jump)

0

Ordinary BDD reduction Zero-suppressed reduction

Oct. 19, 2010 Shin-ichi Minato 9

The latest Knuth’s book fascicle (Vol. 4-1) includes a
BDD section with 140 pages and 236 exercises.

In this section, Knuth used 30 pages for ZDDs,
including more than 70 exercises.

I honored to serve
proofreading of the draft
version of his article.

Knuth recommended to use
“ZDD” instead of “ZBDD.”

He named ZDD operation
set as “Family Algebra.”

Knuth has developed his
own BDD/ZDD package.

His recent lecture at Oxford
was titled “Fun with ZDDs.

BDDs/ZDDs in the Knuth’s book

Oct. 19, 2010 Shin-ichi Minato 10

Algebraic operations for ZDDs

Knuth evaluated not only the data structure of ZDDs,
but more interested in the new algebra on ZDDs.

φ, {1} Empty and singleton set. (0/1-terminal)
P.top Returns the item-ID at the top node of P.
P.onset(v)
P.offset(v)

Selects the subset of itemsets
including or excluding v.

P.change(v) Switching v (add / delete) on each itemset.
∪, ∩, ＼ Returns union, intersection, and

difference set.
P.count Counts number of combinations in P.
P * Q Cartesian product set of P and Q.
P / Q Quotient set of P divided by Q.
P % Q Reminder set of P divided by Q.

Basic operations
(Corresponds to
Boolean algebra)

New operations
introduced by
Minato.

Formerly I called this “unate cube set algebra,”
but Knuth reorganized as “Family algebra.”

Useful for many
practical applications.

Useful for many
practical applications.

Oct. 19, 2010 Shin-ichi Minato 11

Frequent itemset mining

Basic and well-known problem in database analysis.

Record
ID Tuple

1 a b c
2 a b
3 a b c
4 b c
5 a b
6 a b c
7 c
8 a b c
9 a b c
10 a b
11 b c

Frequency threshold = 8 { ab, a, b, c }

Frequency threshold = 7 { ab, bc, a, b, c }

Frequency threshold = 5 {abc, ab, bc, ac, a, b, c }

Frequency threshold = 10 { b }

Frequency threshold = 1 {abc, ab, bc, ac, a, b, c }

Oct. 19, 2010 Shin-ichi Minato 12

Existing itemset mining algorithms

Frequent itemset mining is one of the fundamental
data mining problems.

Apriori [Agrawal1993]
First efficient method of enumerating all frequent patterns.
Breadth-first search with dynamic programming.

Eclat [Zaki1997]
Depth-first search algorithm. Less memory consuming.
In some cases, faster than Apriori.

FP-growth [Han2000]
Depth-first search using “FP-tree,” graph-based data
structure. (ZDD-growth [Minato2006])

LCM (Linear time Closed itemset Miner) [Uno2003]

with a theoretical bound as output linear time.

known as one of the fastest implementation.

Oct. 19, 2010 Shin-ichi Minato 13

Problem in LCM (and the most of others)

LCM (and most of the other itemset mining algorithms)
focuses on just enumerating the frequent itemsets.

It is a different matter how to store and index the result
of huge number of itemsets.

If we want to post-process the mining results, once we have
to dump the frequent itemsets into storage.

Even LCM is an output linear time algorithm, it may require
impracticable time and space.
(number of solution may be exponential.)

Usually we control the output size with the minimum support
threshold in ad hoc setting, but we do not know if it may lose
some important information.

Oct. 19, 2010 Shin-ichi Minato 14

“LCM over ZDDs” [Minato et al. 2008]

LCM: [Uno2003]
Output-linear time algorithm of frequent itemset mining.

ZDD: [Minato93]
A compact graph-based representation for large-scale
sets of combinations.

Combination of
the two techniques

Generates large-scale frequent itemsets on the main
memory, with a very small overhead from the original LCM.
Generates large-scale frequent itemsets on the main
memory, with a very small overhead from the original LCM.

(Sub-linear time and space to the number of solutions
when ZDD compression works well.)

Oct. 19, 2010 Shin-ichi Minato 15

LCM over ZDDs: An example

The results of frequent itemsets are obtained as ZDDs
on the main memory. (not generating a file.)

Freq. thres. α = 7

{ ab, bc, a, b, c }

LCM over ZDDs

F

a

b b

c c

0 1

0

0

0

0 0

1

1 1

1
1

Record
ID Tuple

1 a b c
2 a b
3 a b c
4 b c
5 a b
6 a b c
7 c
8 a b c
9 a b c
10 a b
11 b c

Oct. 19, 2010 Shin-ichi Minato 16

Original LCMLCM over ZDDs# solutions

Oct. 19, 2010 Shin-ichi Minato 17

0

50

100

150

200

250

300

350

400

Performance of LCM over ZDDs
C

PU
 ti

m
e

(s
ec

)

mus
hro

om

T10
I4D

10
0K

BMS-W
eb

View
-1

ch
es

s

co
nn

ec
t

pu
msb

BMS-W
eb

View
-2

3843.06

previous method (LCM-dump)
new method (LCM over ZDDs)

measured by a Linux PC,
Core2Duo E6600, 2.4GHz, 2GB memory.

Oct. 19, 2010 Shin-ichi Minato 18

All Freq.
Itemsets

Post Processing after LCM over ZDDs

We can extract distinctive itemsets by comparing
frequent itemsets for multiple sets of databases.

Various ZDD algebraic operations can be used for the
comparison of the huge number of frequent itemsets.

Dataset 1Dataset 1

Dataset 2Dataset 2

LCM over
ZDDs

LCM over
ZDDs

ZDDZDD

ZDDZDD

All Frequent
Itemsets

?
ZDD algebraic
operation

ZDDZDD

Distinctive
Frequent
Itemsets

Oct. 19, 2010 Shin-ichi Minato 19

Conclusion

We presented our recent results on ZDD-based
techniques for data mining and knowledge discovery.

Automatic compressed data for a huge size of itemsets.

Can be processed efficiently by using various set operations
without decompression.

Limitation: no results obtained when memory overflow occurs.

In 1990’s, BDDs were only applied for VLSI design area.

On that time, the main memory capacity was not sufficient for
database applications.

Recently, BDD/ZDD-based techniques becomes practicable for
many database application.

We started a new nation-wide project “ERATO”:
“Discrete Structure Manipulation System”
promoted by JST, scientific agency of Japan.

	ZDD and its applications�to intelligent processing
	Background
	BDD (Binary Decision Diagram) [Bryant86]
	BDD reduction rules
	Effect of BDD reduction rules
	BDD-based logic operation algorithm
	Boolean function and combinatorial itemset
	Zero-suppressed BDD (ZDD) [Minato93]
	BDDs/ZDDs in the Knuth’s book
	Algebraic operations for ZDDs
	Frequent itemset mining
	Existing itemset mining algorithms
	Problem in LCM (and the most of others)
	“LCM over ZDDs” [Minato et al. 2008]
	LCM over ZDDs: An example
	スライド番号 16
	Performance of LCM over ZDDs
	Post Processing after LCM over ZDDs
	Conclusion

