

Socially enhanced Services Computing

Novel models and algorithms for distributed systems

Schahram Dustdar

Distributed Systems Group
Institute of Information Systems
TU Wien

Joint work with: Daniel Schall, Florian Skopik, Harald Psaier, Lukasz Juszczyk, Linh Truong

Environment and Motivation

- Open and dynamic Internet-based environment
 - Humans and software resources (e.g., Web services)
 - Joining/leaving the environment dynamically
 - Humans perform activities
- Massive collaboration in SOA/Web 2.0
 - Large sets of humans and software resources
 - Dynamic compositions
 - Distributed communication and coordination
- Understanding the dynamics
 - Future interactions
 - Resource selection
 - Compositions & Adaptation of actors
 - Disclosure of information

Crowdsourcing & Human

Computation

Already have an account?

Sign in as a Worker | Requester

amazonmechanical turk

Your Account

HITS

Qualifications Introduction | Dashboard | Status | Account Settings

Mechanical Turk is a marketplace for work.

We give businesses and developers access to an on-demand, scalable workforce. Workers select from thousands of tasks and work whenever it's convenient.

112,613 HITs available. View them now.

Make Money

by working on HITs

HITs - Human Intelligence Tasks - are individual tasks that you work on. Find HITs now.

As a Mechanical Turk Worker you:

- Can work from home
- Choose your own work hours
- Get paid for doing good work

or learn more about being a Worker

Get Results

from Mechanical Turk Workers

Ask workers to complete HITs - Human Intelligence Tasks - and get results using Mechanical Turk, Register Now

As a Mechanical Turk Requester you:

- Have access to a global, on-demand, 24 x 7 workforce
- Get thousands of HITs completed in minutes
- Pay only when you're satisfied with the results

|TU | Motivating Scenario

Q1: How do actor discovery and selection mechanisms work?

Q2: How can actors be flexibly involved (ranked)?

Q3: How can interactions and service compositions become adaptive?

Skopik, F., Schall, D., Dustdar, S. *Trusted Interaction Patterns in Large-scale Enterprise Service Networks*. 18th International Conference on Parallel, Distributed, and Network-Based Computing. Pisa, Italy, 2010. IEEE.

General Principles

- Interface
- Protocols
- Composition
- Behavior dynamics
- Overlay network
- Monitoring & Metrics

U

Socially enhanced Services Computing

Mixed Systems with the human in the loop

- Traditional perspective on SOA not sufficient anymore
- Considering social influences and relations
 - Humans provide services (HPSs)
 - HPSs build social relations (Trust)
 - Emerging network structures and communities
 - Services are discovered based on partner recommendations

TU Human-Provided Services (HPS)

- User contributions modeled as services
 - Users define their own services
 - Reflect willingness to contribute
- Technical realization
 - Service description with WSDL (capabilities)
 - Communication via SOAP messages
- Example: Document Review Service
 - Input: document, deadline, constraints
 - Output: review comments

Schall, D., Dustdar, S., Blake, B.M. A Programming Paradigm for Integrating Human-Provided and Software-Based Web Services IEEE Computer, July 2010

Schall, D., Truong, H.-L., Dustdar, S. The Human-Provided Services Framework. IEEE 2008 Conference on Enterprise Computing, E-Commerce and E-Services (EEE), Crystal City, Washington, D.C., USA, 2008. IEEE.

Figure 2. The HPS reference architecture consists of three essential layers: data collection, services, and middleware.

Overview Metrics

Metrics: ranking and selection of services

Ranking Algorithm: Interaction context

 Users interact in different contexts with different intensities

 Personalize ranking (i.e., expertise) for different contexts

Ranking Algorithm:

Context-aware DSARank (Dynamic Skill Activity)

Approach: Expertise mining in weighted subgraph

Linearity Theorem (Haveliwala 02):

$$w_1 PR(p_1) + w_2 PR(p_2) = PR(w_1 p_1 + w_2 p_2)$$

11

Context-dependent DSARank

Context 2

- (1) Identify context of interactions ("tags")
- (2) Select relevant links and people
- (3) Create weighted subgraph (for context)
- (4) Perform mining

User 1's expertise in context 1

User 1's expertise in context 2

$$DSA(u;C') = \sum_{c \in C'} w_c DSA(w_1 p_1(u) + ... + w_n p_n(u))$$

Combined online based on preferences

Calculated offline

E.g., p(u) = w1 IIL(u) + w2 availability(u)

Ranking Example:

Interaction Mining

- Email Interaction Graph
- High interaction intensity influences importance rankings
- High interaction intensity reveals key people

Gell Solberg Jell Dasovich
James D. Steffes
Mark Guzman
Bill Williams III
Amy FitzPatrick
John Anderson
Tim Belden
Rya Slinger
Northe Salisbury
Cana Semperger Crain Dean
Mile Swerzbin Christopher F. Celger

ID	Rank (DSA)	Rank (PR)	Intensity Level
37	1	21	7.31
253	4	170	2.07
347	5	282	1.39

Delegation Factory/Sink

Factory

- a accepts and delegates tasks frequently
- a processes few tasks and has a low task-queue

Sink

- d accepts too many tasks
- d processes slow (capability vs. overload)

Misbehavior impact

- Produces unusual amounts of task delegations
- Tasks miss their deadline
- Leads to performance degradations of the entire network

[TU] (Mis)behavior monitoring

- Open System with varying participation
- All services use the communication infrastructure
- Interaction logging:
 - Log the exchanged messages and process their content
- Logs provide information on:
 - Task properties: id, tags, etc.
 - Type, skills, and interests of services

TU Similarity Service

- Cos-similarity to determine the similarity of two services' profile vectors: $sim_{profile}(\mathbf{p_u}, \mathbf{p_v}) = \cos(\mathbf{p_u}, \mathbf{p_v})$
- Trust mirroring: "similar minded" nodes tend to trust each other more than random nodes
- Trust teleportation: the past trust relation (u,w) "teleports" to others having similar interests.
 - Note: u and w have different profile, e.g., different roles

Misbehavior adaptation

initial state

- -> b queue overload detected
- -> find alternative/similar service
- -> (i) 1st support b mirroring of trust
- -> (ii) 2nd avoid b teleportation of trust

TU Self-adaptation concepts

- feedback loop design for misbehavior healing
- MAPE loop of autonomic computing:
 - monitor interactions and queue threshold
 - analyze behavior and compare to misbehavior models
 - update behavior registry (part of knowledge)
 - plan adaptive actions
 - execute channel regulations and redirections

VieCure framework

- Interaction logging updates monitoring db and behavior registry.
- Policy Store and Similarity Service determine the adaptations
- Admin tools allow to finetune the framework

- Mixed Dynamic Systems require novel "programming model" composing HPS and SBS
- Identification of (mis)behavior patterns and protocols and composition primitives in Mixed Systems
- Non-intrusive adaptation of misbehavior with self-healing

Thanks for your attention

- 1. Trust-based Discovery and Interactions in Mixed Service-Oriented Systems Schall D., Skopik F., Dustdar S. IEEE Transactions on Services Computing (TSC), Volume 3, Issue 3, pp. 193-205
- 2. Modeling and Mining of Dynamic Trust in Complex Service-oriented Systems Skopik F., Schall D., Dustdar S. Information Systems Journal (IS), Volume 35, Issue 7, November 2010, pp. 735-757. Elsevier.
- 3. Programming Human and Software-Based Web Services Schall D., Dustdar S., Blake M.B. IEEE Computer, vol. 43, no. 7, pp. 82-85, July 2010.
- 4. Unifying Human and Software Services in Web-Scale Collaborations Schall D., Truong H.-L., Dustdar S. IEEE Internet Computing, vol. 12, no. 3, pp. 62-68, May/Jun, 2008.
- 5. Runtime Behavior Monitoring and Self-Adaptation in Service-Oriented Systems Psaier H., Juszczyk L., Skopik F., Schall D., Dustdar S. 4th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO'10), 27 Sept.-01 Oct. 2010, Budapest, Hungary.

