
Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

Parallel Data Retrieval in Large Data Sets by Algebraic
Methods

Marián Vajteršic

Tobias Berka

University of Salzburg, Austria

University of Salzburg 1

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

Outline

1. Motivation

2. Vector Space Model

3. Dimensionality Reduction

4. Data Distribution

5. Parallel Algorithm

6. Evaluation

7. Discussion

University of Salzburg 2

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

1. Motivation: Automated Information Retrieval

• Problems of scale: 500+ million Web pages on Internet, typical search engine
updates ≈ 10 million Web pages in a single day and the indexed collection of the
largest search engine has ≈ 100 million documents.

• Development of automated IR techniques: processing of large databases without
human intervention (since 1992).

• Modelling the concept–association patterns that constitute the semantic struc-
ture of a document (image) collection (not simple word (shape) matching).

University of Salzburg 3

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

1. Motivation: Our Goal

• Retrieval in large data sets (texts, images)

– in the parallel/distributed computer environment,

– using linear algebra methods,

– adopting the vector space model.

– in order to get lower response time and higher throughput.

• Intersection of three substantially large IT fields:

– information retrieval (mathematics of the retrieval models, query expansion,
distributed retrieval, etc)

– parallel and distributed computing (data distribution, communication strate-
gies, parallel programming, grid-computing, etc.)

– digital text and image processing (feature extraction, multimedia databases,
etc).

University of Salzburg 4

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

2. Vector Space Model: Corpus Matrix

• Documents di are vectors in m features

di =

 d1,i
...

dm,i

 ∈ Rm.

• Corpus matrix C contains n documents (column-wise)

C =
[
d1 · · · dn

]
∈ Rm×n.

University of Salzburg 5

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

2. Vector Space Model: Corpus Matrix – Texts versus Images

• Text retrieval: many documents (e.g. 10 000), many terms but FEW terms for
each document, hence SPARSE corpus matrix.

• Image retrieval: many images, few features (e.g. 500) but FULL feature set for
each document, hence DENSE corpus matrix.

• DENSE feature vectors of a particular research interest, because

– dimensionality reduction creates dense vectors

– multimedia retrieval uses dense vectors

– retrieval on dense vectors is expensive

– no proper treatment in literature.

• In both cases (texts, images): the selection of terms (features) is heavily task–
dependent.

University of Salzburg 6

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

2. Vector Space Model: Query Matching

• For computing the distance of a query–vector q ∈ Rm to the documents, we use
cosine similarity:

sim (q, di) := cos (q, di) =
〈q, di〉
‖q‖‖di‖

.

• Using matrix-vector multiplication, we can write

sim (q, di) =

(
qTC

)
i

‖q‖‖di‖
.

University of Salzburg 7

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

2. Vector Space Model: Conducting Queries

• In terms of computation:

– Compute similarity of q for all documents di.

– Sort the list of similarity values.

• In terms of algorithms:

– First: Matrix-vector product.

– Then: Sort.

• In terms of costs:

– Complexity O(mn).

– 4 GiB ≈ 1 million documents with 1024 features (single precision).

University of Salzburg 8

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

2. (Basic) Vector Space Model – Summary

SUMMARY:

• Simple to construct (corpus matrix) and conduct queries (cosine similarity).

• Square complexity (one query).

• High memory consumption.

• Sensitivity to failure (e.g. for polysemy and synonyms).

REMEDY:

• Dimensionality reduction (reduction of memory and computational complexity,
better retrieval performance).

• Parallelism (speedup of computation, data distribution across memories).

• Most advantageous: a combination of both approaches.

University of Salzburg 9

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

3. Dimensionality Reduction: Goal and Methods

GOAL:
To reduce the dimensionality of the corpus without decreasing the retrieval quality

METHODS:

• QR Factorization

• Singular Value Decomposition (SVD)

• Covariance matrix (COV)

• Nonnegative Matrix Factorization (NMF)

• Clustering .

University of Salzburg 10

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

3. Dimensionality Reduction: Formalism

• Assuming we have a matrix L containing k row vectors of the length m.

•We project every column of C on all k vectors, using the matrix product LC.

• Projection-based dimensionality reduction can be seen as as a linear function

f (v) = Lv (v ∈ Rm)

f : Rm → Rk, k < m.

University of Salzburg 11

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

3. Dimensionality Reduction: QR

• Compute the decomposition C = QR, where Q of the size m×m is orthogonal
(QQT = QTQ = I) and R (size m× n) is upper triangular.

• If rank(C) = rC, then rC columns of Q form a basis for the column space of C.

• QR factorization with complete column pivoting (i.e., C → CP where P is the
permutation matrix) gives the column space of C but not the row space.

• QR factorization enables to decrease the rank of C but not optimally.

University of Salzburg 12

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

3. Dimensionality Reduction: SVD

• C = UΣV T ... singular value decomposition of C

• C ≈ UkΣkV
T
k ... rank-k approximation

• C ′ = UT
k C ... reduced corpus

• q′ = UT
k q ... reduced query.

• SVD of C: both column and row spaces of C are computed and ensures the
optimal value of k for decreasing the rank.

University of Salzburg 13

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

3. Dimensionality Reduction: SVD

OUR COMPETENCE:

• Parallel block-Jacobi SVD algorithms.
Our approach with the dynamic ordering and preprocessing performs for some
matrix types better than SCALAPACK (Bečka, Okša, Vajteršic; 2010).

• Application of (parallel) SVD to Latent Semantic Indexing (LSI) Model (Watzl,
Kutil; 2008).

• Parallel SVD Computing in the Latent Semantic Indexing Applications
for Data Retrieval (Okša, Vajteršic; 2009).

University of Salzburg 14

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

3. Dimensionality Reduction: COV

• Compute the covariance matrix of C.

• Compute the eigenvectors of the covariance matrix.

• Assume Ek are the k largest eigenvectors (column-wise), then

– C ′ = ET
k C ... reduced corpus,

– q′ = ET
k q ... reduced query.

University of Salzburg 15

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

3. Dimensionality Reduction: NMF

MOTIVATION:

• Corpus matrix C is nonnegative.

• However, SVD cannot maintain nonnegativity in the low–rank approximation
(because the components of left and right singular vectors can be negative).

•When aiming to preserve the nonnegativity also in the k-rank approximation, we
have to apply NMF.

NMF:

• For a positive integer k < min (m, n) compute nonnegative matrices W ∈ Rm×k

and H ∈ Rk×n .

• The product WH is a nonnegative matrix factorization of C (although C is not
necessarily equal to WH) but it can be interpreted as a compressed form of C.

University of Salzburg 16

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

3. Dimensionality Reduction: NMF

BASIC COMPUTATIONAL METHODS for NMF:

• ADI Newton iteration

• Multiplicative Update Algorithm

• Gradient Descent Algorithm

• Alternating Least Squares Algorithms.

OUR COMPETENCE:

• Nonnegative Matrix Factorization: Algorithms and Parallelization. (Okša, Bečka,
Vajteršic; 2010)

• FWF project proposal (Parallelization of NMF) with Prof. W. Gansterer, Uni-
versity of Vienna (in preparation).

University of Salzburg 17

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

3. Dimensionality Reduction: Clustering

• Compute k clusters of the column vectors of C.

• Compute a representative vector for every cluster.

• Assume R are the representatives (column-wise), then

– C ′ = RT
k C ... reduced corpus

– q′ = RT
k q ... reduced query.

OUR COMPETENCE:

• Analysis of clustering approaches (Horak; 2010)

• Parallel Clustering Methods for Data Retrieval. (Horak, Berka, Vajteršic; 2010
(in preparation))

University of Salzburg 18

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

4. Data Distribution: Partitionings

GOAL:
To reduce the dimensionality of the corpus matrix through its partitioning into

submatrices for parallel execution.

• Feature partitioning – vertical partitioning: row partitioning.

• Document partitioning – horizontal partitioning: column partitioning.

• Hybrid partitioning – combines both: block partitioning.

University of Salzburg 19

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

4. Data Distribution: Row Partitioning

• Split the features F into M sub-collections,

F =

M∐
i=1

Fi,

• and split the corpus matrix horizontally

C =

 C[1]
...

C[M]

 ,

• into local corpus matrices
C[i] ∈ Rmi×n.

University of Salzburg 20

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

4. Data Distribution: Column Partitioning

• Split the documents D into N sub-collections,

D =

N∐
i=1

Di,

• and split the corpus matrix vertically

C = [C[1] · · ·C[N]] ,

• into local corpus matrices
C[i] ∈ Rm×nj.

University of Salzburg 21

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

4. Data Distribution: Block Partitioning

• Split the corpus matrix block-wise

C =

 C[1, 1] · · · C[1, N]
...

C[M, 1] · · · C[M, N]

 ,

• into NM local corpus matrices

C[i, j] ∈ Rmi×nj.

University of Salzburg 22

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

4. Data Distribution: Example Block Distribution

IMAGE CORPUS:
1024 amateur color photographs from different landscapes:

arctic, alpine, beach shores, desert.
320× 320 pixels, into 32× 32 blocks with 512 features each (3D histogram)

University of Salzburg 23

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

5. Parallel Algorithm: Potential of Parallelism

• Algebraic Methods for the IR problem are good candidates for efficient paralleliza-
tion.

• Exploitation of many processors enables to reduce the computational and memory
complexity.

• Parallelism can be applied on more hierarchical levels of the solution of the prob-
lem.

OUR COMPETENCE:

• 40 years experience in development of parallel algorithms and programs.

• EU, NATO and CEI projects in the area of parallel computing.

• AGRID national prject in Grid-computing.

• Trobec, R., Vajteršic, M., Zinterhof, P. (Eds.): Parallel Computing: Numerics,
Applications, and Trends. SPRINGER-Verlag, London, 2009.

University of Salzburg 24

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

5. Parallel Algorithm: Characteristics

• Dimensionality–reduction and query–processing on dense vectors in the basic vec-
tor space model.

• Target architecture: parallel computer with distributed memory.

• Infrastructure: cluster system.

• Programming paradigm: message passing with MPI.

• Programming language: C++, C, FORTRAN.

University of Salzburg 25

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

5. Parallel Algorithm: Node Organization

• 2D mesh of the size P = M ×N .

• Set of features per row.

• Set of documents per column.

• Every node holds a block C(i, j) (i = 1, ...,M ; j = 1, ..., N) of the corpus matrix
(block–partitioning).

• Goal: exploit nested parallelism with rows and columns.

University of Salzburg 26

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

5. Parallel Algorithm: Dimensionality–Reduction

Dimensionality reduction LC using L ∈ Rk×m :

• Split L into

L =

 L[1]
...

L[M]

 ,

• with local projection matrices

L[i] ∈ Rki×m .

• Distribute L[i] to all processing nodes in the i-th row.

• Distribute the j-th block-column of C to all nodes in the j-th row.

• On each node (i, j) compute the reduction L[i]C[∗, j] locally.

• Theoretic speed-up O(NM).

University of Salzburg 27

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

5. Parallel Algorithm: Query Matching

• Distribute the (row)query–vector q to all nodes.

• On each node (i, j) compute the matrix-vector product locally:

(qC)i =

m∑
j=1

qjCj,i =

M∑
h=1

mh∑
j=1

q[h]jC[h]j,i .

• All processors in the j-th column of the mesh (j = 1, ..., N) cooperative compute

r[j] = qC[∗, j] =

M∑
i=1

q[i]C[i, j] .

• Generate
r = qC = ([r[1], r[2], ..., r[N]) .

• Sort components of r .

University of Salzburg 28

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

5. Parallel Algorithm: Overview

• Broadcast the appropriate query data to all nodes.

• Compute local results.

• Accumulate matrix-vector product.

• Merge-sort result entity-similarity pairs.
University of Salzburg 29

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

5. Parallel Algorithm: MPI

• Distribute query: MPI broadcast.

• Matrix-vector product: using MPI–reduce with the Sum–operator.

• Merge-sort: MPI only provides collective vector operations (fixed length).

University of Salzburg 30

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

5. Parallel Algorithm: Merge-Sort Communication Structure

Flat binary tree / hypercube (with the natural binary addressing).

University of Salzburg 31

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

5. Parallel Algorithm: Nested Communication Structure

University of Salzburg 32

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

6. Evaluation: Theoretic Speed-up

• Vector matrix product dominates complexity.

• Best case: linear speed-up.

• Balanced distribution of entities (i.e. mi = m
M , ki = k

M for i = 1, ...,M
and nj = n

N for j = 1, ..., N) is important!

University of Salzburg 33

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

6. Evaluation: Measured Speed-Up

• For 1024 – 4096 features.

• For 100,000 – 1,000,000 documents.

• For all 3 partitioning strategies:

– pure feature partitioning failed

– document partitioning provided good efficiency

– hybrid partitioning delivered super-linear speed-up.

• Recommended topology: 2×N .

University of Salzburg 34

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

6. Evaluation: Serial Response Time

 0

 2

 4

 6

 8

 10

 12

 14

 100 200 300 400 500 600 700 800 900 1000 1100

tim
e

[s
]

problem size (millions)

1024 features 2048 features 4096 features

University of Salzburg 35

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

6. Evaluation: Document Partitioning Response Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 100 200 300 400 500 600 700 800 900 1000 1100

tim
e

[s
]

problem size (millions)

1x8 1x12 1x16 1x20 1x24 1x28 1x32

University of Salzburg 36

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

6. Evaluation: Document Partitioning Speed-up

 0

 10

 20

 30

 40

 50

 60

 100 200 300 400 500 600 700 800 900 1000 1100

sp
ee

d-
up

problem size (millions)

1x8 1x12 1x16 1x20 1x24 1x28 1x32

University of Salzburg 37

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

6. Evaluation: Hybrid Partitioning Response Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 100 200 300 400 500 600 700 800 900 1000 1100

tim
e

[s
]

problem size (millions)

2x4 2x6 2x8 2x10 2x12 2x14 2x16

University of Salzburg 38

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

6. Evaluation: Hybrid Partitioning Speed-up

 0

 10

 20

 30

 40

 50

 60

 100 200 300 400 500 600 700 800 900 1000 1100

sp
ee

d-
up

problem size (millions)

2x4 2x6 2x8 2x10 2x12 2x14 2x16

University of Salzburg 39

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

6. Evaluation: Hybrid Partitioning Efficiency

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 100 200 300 400 500 600 700 800 900 1000 1100

ef
fic

ie
nc

y

problem size (millions)

2x4 2x6 2x8 2x10 2x12 2x14 2x16

University of Salzburg 40

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

6. Evaluation: Serial and Parallel Response Times and Throughputs

• ts : response time for complete processing one query vector on one processing
node (serial response time).

• Ts = 1
ts

: serial throughput (number of processed queries in 1 sec. on one proces-
sor).

• Told = NM
ts

: throughput for a naive NM -times replication of the serial computa-
tion on NM processors.

• tp : parallel response time for complete processing of one query vector on NM
processors (parallel response time).

• Tnew = 1
tp

: throughput for a parallel implementation of the query processing on

NM processors.

University of Salzburg 41

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

6. Evaluation: Improvements

• Speed-up S = ts
tp

> 1: improved response time.

• Efficiency E > 1: improved throughput.

• Gain in throughput Told
Tnew

is equal to the parallel efficiency E:

Tnew

Told
=

1
tp

NM
ts

=
ts
tp

1

NM
=

S

NM
= E .

University of Salzburg 42

Austria-Japan ICT-Workshop, Tokyo, October 18-19, 2010

7. Discussion

• IR is a concurrent task:

– add/remove documents

– update and downdate operations

– multi-user operation.

• IR is a long-term activity:

– checkpointing?

– partial recovery?

• Study further mechanisms:

– caching

– clustering

– parallel programming paradigms (multithreading,...)

• Construct a complete, parallel high-performance IR system.

University of Salzburg 43

