

1st Spain-Japan Joint Workshop on "Nanoscience and New Materials"

Ordered Porous Materials as heterogenous catalysts and adsorbents

Fernando Rey Institute of Chemical Technology ITQ - Valencia

Outline of the Presentation

Zeolites
Natural Gas Upgrading
Olefin Production

Outline of the Presentation

Zeolites
Natural Gas Upgrading
Olefin Production

Structure of Zeolite EU-1

Zeolites are the aluminosilicate members of the family of microporous solids known as "molecular sieves."

The term molecular sieve refers to a particular property of these materials, i.e., the ability to selectively sort molecules based primarily on a size exclusion process. This is due to a very regular pore structure of molecular dimensions. The maximum size of the molecular or ionic species that can enter, formed or get out of the pores of a zeolite is controlled by the dimensions of the channels

ZSM-5 10 TO₂ 5.5 x 5.1 Å

ECR-34 18 TO₂ 10.1 x 10.1 Å

To understand the aiming of the Natural Gas Upgrading, it is needed to spend some time looking at the energy landscape for the near future

World Oil reserves

Total 1,201, billion bbl, Jan 2006

World Oil depletion

World Oil reserves 1.200 billion bbl

World Natural Gas Reserves 6.180 trillion cubic feet

About 80% of the proven reserves are small and/or far from final markets.

World Natural Gas Reserves 6.180 trillion cubic feet

- → Recoverable reserves 6,180 trillion cubic feet
- → 80% of the proven natural gas reserves are stranded

Proved Reserves 6.180 trillion cubic feet

Profiteable Reserves 1.236 trillion cubic feet

Their exploitation is not economically profitable

→ Recoverable reserves - 6,180 trillion cubic feet

→ 80% of the proven natural gas reserves are stranded

Why?

Natural Gas is transported through pipelines or as cryogen liquid to final markets

→ Recoverable reserves - 6,180 trillion cubic feet

Contaminat	Level (vol %)	Problem
CO ₂	0.5 – 10.0 , peak 70	Corrosion, no heating value,
SH ₂	0 – 1, peak 10	Corrosion, toxicity
N_2	0.5 – 5.0, peak 25	No heating value
Water	0.5 – 1.0	plugging of transmission lines
C2+	1 – 5 %	Pipeline blocking, heating value

Natural Gas is transported through pipelines needs a huge investment, only affordable in large landfills.

➔ Recoverable reserves – 6,180 trillion cubic feet

Impurity	Initial value	Pipeline Gas
CO ₂	0.5 vol%	3 – 4 vol.%
H ₂ S	10 vol%	5.7 – 22.9 mg/m ³
N ₂	3 vol%	3 vol.%
H ₂ O	0.5 vol%	150 ppmv
C ₂₊	4 vol%	4 vol%

The optimum situation is the insitu production of liquefied Natural Gas.

Impurity	Initial value	Pipeline Gas	Feed to LNG Plant
CO ₂	0.5 vol%	3 – 4 vol.%	< 50 ppmv
H ₂ S	10 vol%	5.7 – 22.9 mg/m ³	<4 ppmv
N ₂	3 vol%	3 vol.%	< 1 vol.%
H ₂ O	0.5 vol%	150 ppmv	< 0.1 ppmv
C ₂₊	4 vol%	4 vol%	< 2 vol.%

The actual technologies do not
 allow their easy installation and
 maintenance in remote places.
 Particularly difficult is the removal of CO₂ and N₂ from raw Natural Gas streams.

Impurity	Initial value	Pipeline Gas	Feed to LNG Plant
CO ₂	0.5 vol%	3 – 4 vol.%	< 50 ppmv
H₂S	10 vol%	5.7 – 22.9 mg/m ³	< 4 ppmv
N ₂	3 vol%	3 vol.%	< 1 vol.%
H ₂ O	0.5 vol%	150 ppmv	< 0.1 ppmv
C ₂₊	4 vol%	4 vol%	< 2 vol.%

Aqueous amine or organic solvent scrubbing

Can help zeolites in upgrading CO₂?

Molecular Sieve Technology for CO₂ capture

Typical amine Process

ACHIEVEMENTS

- Raw Natural Gas con be upgraded to Methane of quality enough to be transported as Liquid Methane with a simpler technology.
- The use and transportation of amines is overcome by using this new sequestration model.

OBJECTIVES

- To increase the selectivity for the elective adsorption of N₂ versus CO₂.
- To tailor the hydrophobic properties of the zeolite in order to increase the regenerability of the adsorbent.

ACHIEVEMENTS

 Raw Natural Gas con be upgraded to Methane of quality enough to be transported as Liquid Methane with a simpler technology.

 The use and transportation of amines is overcome by using this new sequestration model.

OBJECTIVES

- To increase the selectivity for the elective adsorption of N₂ versus CO₂.
- To tailor the hydrophobic properties of the zeolite in order to increase the regenerability of the adsorbent.

Profiteable reserves 1.236 trillion cubic feet III Amine technology Profiteable Reserves
< 4.000 trillion cubic feet.
ZEOLITE TECHNOLOGY

Olefins are employed as very primary chemical building blocks of most of the goods we found in our life: plastics, fibers, lubricants, films, textiles, pharmaceuticals, etc. ---even chewing gum!

Production by Feedstock

Demand by End-Use

Domestic Demand = 31 Million Metric Tons

North America 2006 PG/CG Propylene Supply/Demand

Production by Source Demand by End-Use PP **Stm. Crackers** 59% 49% Cumene 1% Others Acrylo-6% nitrile Acrylic Oxo Alc. **FCC/Splitters** Propylene Others 10% 3% Oxide 48% 6% Acid 12% 6%

Domestic Demand = 16 Million Metric Tons

Steam cracking process :

- Operates at very high temperature (800 -900 °C)
- High water content in the stream $(H_2O/C = 1 3)$
- Very short contact time
- Selectivity towards valuable olefins is approx. 85%
- The reaction is highly endothermic

Huge needing of energy

Steam cracking is the single most energy consuming process in the chemical industry

ca. 30% of the sector's total final energy use and ca. 180 millions tons of CO_2 in 2004

Another reason for innovation: over 35% of European crackers are over 25 years old

An attractive alternative to steam cracking is the selective oxidative dehydrogenation of low value paraffins (ODH).

 $\frac{\text{Paraffin} + \text{O}_2}{\text{C}_n\text{H}_{(2n+2)} + \text{O}_2}$

Olefin + Water $C_nH_{2n} + H_2O$

- Exothermic process
- Low temperature reaction (approx. 400°C)

Profesor Ueda is leadering this field

An attractive alternative to steam cracking is the selective oxidative dehydrogenation of low value paraffins (ODH).

Paraffin + O_2 $C_nH_{(2n+2)} + O_2$ Olefin + Water $C_nH_{2n} + H_2O$

 CO_2 + Water

Combustion must be minimized!!

Ethane to ethylene by ODH process

Ethane + O_2 $C_2H_6 + O_2$ Ethene + Water $C_2H_4 + H_2O$

Porous mixed oxide MoVTeNbO

Propane to propylene by ODH process

Propane + O_2 $C_3H_8 + O_2$ Propene + Water $C_3H_6 + H_2O$

Propane to propylene by ODH process

Reaction temperature = 500°C

100 80 Selectivity, % 60 Propene 40 CO CO_2 20 0 10 20 30 40 50 n Propane converison, %

T. Blasco; J.M. Lopez-Nieto et al J. Catal., 152 (1995) 1-17.

Propane to propylene by ODH process

Propane to propylene by ODH process

At low conversion the propylene selectivity is very high.

COMBINED PROCESS REACTION-ADSORPTION

T. Blasco; J.M. Lopez-Nieto et al J. Catal., 152 (1995) 1-17.

Propane to propylene by ODH/separation process

Propane to propylene by ODH/separation process

Promising results on Propane/propylene separation process

ITQ-32 8 TO₂ 3.8 x 3.6 Å

Kinetic separation

Propane to propylene by ODH/separation process

Propane ODH reaction on vanadium-AIPO-5

Propane/propene separation on ITQ-12 or ITQ-32

ACHIEVEMENTS

- Very selective catalyst for Ethylene production by ODH of ethane.
- Modest selectivities in propane ODH reaction, but promising expectatives in combined ODH/separation processes.

OBJECTIVES

- Increase the selectivity of current propane ODH catalysts.
- To increase the selectivity for the selective adsorption of propylene versus propane (THERMODYNAMIC SEPARATION)
- To tailor the hydrophillicity properties of the zeolite in order to increase the water retention capacity, without penalty of the propene adsorption.

Many application of zeolites in energy related processes

Fischer-Tropsch process to Diesel
Modified Fischer-Tropsch to gasoline
Modified Fischer-Tropsch to olefins

Biomass to fuels and/or olefins
Biomass to chemicals

