Nano-structured Complex Metal Oxide Catalysts

Catalysis Research Center, Hokkaido University Wataru Ueda

April 20, 2009

Catalysis Research Center

The national collaborating institution in the field of catalysis in Japan

Sapporo city

CRC

Catalysis Research Center (CRC) originated from the Institute of Catalysis which was founded in 1943 in Hokkaido University for fundamental studies on catalysis, and started as a national collaborating institution in 1988, followed by scale-up reorganization in 1998 and by a organization renewal in 2007 for playing a leading role in catalysis studies and a bridging role among interdisciplinary scientific researches.

University Campu

Multifunctional activity

CRC

7 professors 7 associate professors 6 assistant professors 29 research fellows 5 visiting professors 19 collaborative researchers 58 students 13 tentative stuffs 8 technical stuffs 20 Administrative stuffs 172 Total Fundamental CRC researches supported by government, JSPS, JST, etc.

Only one research, Challenging research, New field research

Collaborative research projects organized by CRC with researchers in Japan Research projects with companies, NEDO, etc. Research networking Catalysis Summit Various scientific open facilities

International collaborations International symposium Joint laboratories in China International research exchange program

Domestic activity for catalysis community Various scientific symposium, seminar

Educational activities

Global COE program Students from various faculties of Hokkaido Univ. Educational program for researchers

CRC Research Structure: Sections and Clusters

Integrated Research Section

Researcher outside CRC

Research Cluster for Networking of Researchers in Catalytic Science

Research Cluster of Asymmetric Induction of Non-Centrochirality as Novel Media Research Cluster of Well-Defined Surface Material Synthesis in Controlled Reaction Field

Research Cluster of Functionalized Crystals

Research Cluster of Energy Conversion Field

Research Cluster for Biomass Conversion

Research Cluster of Bio-Interface

Extensive Research Section

Target-Oriented Research Assembly

Fundamental Research Division Section of Surface Structure Chemistry

Technical Division

Section of Interfacial Spectrochemistry

Section of Catalytic Reaction Chemistry

Section of Catalytic Materials Chemistry

Section of Catalytic Transformation

Section of Catalytic Assemblies

Section of Molecular Catalysis Chemistry

Recent topics Collaboration between Catalysis and Nature for the Realization of Sustainable Development

 Nature step (Photosynthesis)
Artificial Catalytic step

Supported Pt or Ru catalysts can convert cellulose into sugar alcohols such as sorbitol and mannitol by an environmentally benign process. The process provides new opportunities for the utilization of abundant and inexpensive cellulose as a chemical feedstock.

Fukuoka, Angew. Chem. Int. Ed., 2006

A new photocatalytic water splitting system was developed to mimic natural photosynthesis, in which two photoexcitation steps were combined. The process allows visible light to be utilized efficiently and a wide spectrum of visible light.

Abe, Chem. Phys. Lett. 2008

Nano-structured Complex Metal Oxide Catalysts

Catalysis Research Center, Hokkaido University Wataru Ueda

April 20, 2009

Research Framework

Thermoelectro material

New type fuel cell

Layered Nano-sheet

Polyoxometalates

Macro-level design

Nano-cube, fiber

Photo

catalysts

Complex metal oxides

Atomic-level design

ACIG

Nano-level design

Three-dimentionally Order material (3DOM)

Catalytic filter (Oxidative shoot removal) Octahedaral molecular sieves (OMS)

Oxidation catalysts

Multifunctional Complex Metal Oxide

Porous property

Three dimensional Redox

Alkane oxidation

Heteropoly compounds H_2O_2 oxidation Gas-phase oxidation

Zeolite Titanosilicate H_2O_2 oxidation

Mo₃VOx Complex Metal Oxide Crystals

- 1. Crystal formation mechanism
- 2. Microporocity
- **3.** Catalytic reactions

Catalyst preparation-Hydrothermal synthesis-

 $(NH_4)_6 Mo_7 O_{24} \cdot 4H_2 O$ (aqueous solution) + VOSO₄ $\cdot nH_2 O$ (Mo:V = 4 : 1)

Structure comparison

Orthorhombic phase

Assembly of $[Mo_6O_{21}]^{6-}$, as the structural unit

Octahedral coordination chemistry

Trigonal phase

Sadakane, Ueda, Angew. Chem. Int. Ed. (2007)

Effect of calcination on adsorption capacity

Adsorption of various small molecules

Nano-structured Complex Metal Oxide Catalysts

Summary

- Crystal formation mechanism---Cluster unit to solid
- 2. Microporocity----
 - New octahedra molecular sieve with redox property
- **3.** Catalytic reactions---High performance and active pore site

