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@ IMDEA is a new, efficient and flexible institutional framework promoted by the

Comunidad de Madrid to perform research of excellence, carry out technology
tfransfer and attract talented researchers to Madrid in an international environment.

@ IMDEA initiative comprises eight research institutes (water, food, social sciences,

energy, materials, nanoscience, networks and software). Each research institute is
an independent, non-profit private organization.
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@ Infrastructures: The research activities of IMDEA-materials began on October
2007 at a provisional site, E. T. S. de Ingenieros de Caminos, UPM. The
construction of the final building, located at the Area Tecnologica del Sur
(Getafe), will begin in 2009.

@ Researchers: Over 200 applications for research positions were received from
30 countries in the international calls issued in 2007 and 2008. 18 researchers
(from 9 countries) have already joined IMDEA-materials.

@ Facilities:
Equipment for processing of composites, advanced microstructural
characterization and supercomputing (0.6 M<€)
Equipment for processing of advanced metallic alloys (0.6 M€)

@ Projects: (over 2 M€)
- 4 european projects (Maaximus, Interface, Defcom, Engage)
- 3 projects funded by industry (Intel, Airbus, FutureFibres)
- 2 CENIT projects (MAGNO, ICARO)

More information: http://www.materials.imdea.org
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1. OPPORTUNITIES FOR STRUCTURAL MATERIALS

- Transportation
- Energy generation

2. RESEARCH LINES

- Polymer nanocomposites: multifunctional capabilities

- Structural composites: supertough and green composites
- Metallic alloys for high temperature: TiAl intermetallics

- Light metallic alloys: Mg

- Multiscale materials modelling: virtual materials
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.I-- dEH ENERGY CRISIS vs. STRUCTURAL MATERIALS

@ High energy prices in the foreseeable future will act as driving force to:
- Increase the contribution of renewable, clean energy sources.
- Increase the efficiency of current energy generation systems.
- Reduce weight in transportation.
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@ Higher stiffness and strength, low density.

@ Higher temperature operation capabilities.

@ Incorporation of multifunctional features (on top of structural ones)

@ and last (but not least), structural materials should be damage tolerant ...

Montreal, June 10th, 2007. Robert Kubica is driving his BMW at 280 km/h during
the Formula 1 Grand Prix and ...

The "brittle” composite structure was able to absorb the 1.8 MJ of energy.
Robert Kubica was out of the hospital in 24 hours.

This was possible through the use of sophisticated materials engineering ...
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@ Exploit and fine tune the characteristics of nanofillers to obtain structural
nanocomposites with multifunctional properties:

- Optimum fracture toughness and tribological resistance
- Thermal stability and fire retardancy

- Electrical conductivity

- UV shielding and self-cleaning

@ Incorporation of multifunctional nanocomposites as matrices in structural
carbon fiber composites to provide enhanced multifunctional capabilities.




Polymer

-IH.dE]a MECHANICAL + ELECTRICAL PROPERTIES nanocomposites

Mo good for toughness: rigid
particles in rubber makes the
latter rigid and reduces their
ability to cavitate.

Absence of rigid fillers within elastomer particles

Controlled micro/nano-structures

Superior toughness &
electrical conductivity
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@ Every year, more than 300,000 deaths and €15 billion in direct property
losses are reported world-wide due to fire hazards (i. e. 20000 TV fires per year

in Europe).
@ Majority of fires are attributed to polymeric materials in many consumer

products including electronics, toys, food packaging, furniture, wall coverings,
roof tops, textiles, wires, cables....

Perfect insulation/barrier
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OBJECTIVES: use of various approaches with different nanoparticles (clay,
CNT, POSS, CNF, graphite oxide, etc) to achieve V-0 rating (in UL94 test),
reduced heat release rate and mass loss rate and delayed burning.
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‘Sealed cracks w

@ Modification of the clay layers

@ Stability and continuity of char

@ Migration of clay layers to the burning surface
@ Second layer of defense

@ These approaches can be further exploited by adding another inorganic
additive apart from silicate layers to enhance the packing density and improve
the flame retardancy (CNTs or TiO3).
@ Multifunctional polymer nanocomposites:

- CNT: electrical conductivity, EMI shielding and electrostatic dissipation.

- TiO2: UV radiation shielding and combination of photocatalysis/hydrophilicity
leads to self-cleaning and self-sterilized properties.
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@ Structural composites are made up by stacking fiber-reinforced polymer
laminae. Interlayer strength and toughness is one of performance limiting factors.

OBJECTIVE: Improving interlayer mechanical properties through nanostructured materials |
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@ CHALLENGE: Combine traditional and green composites to increase energy
efficiency and promote recycling.

@ Advantages of green composites:
- Lower density (density natural fibers << glass fibers)
- Large and cheap supply of natural fibers (hemp, oilseed flax, kenaf, sisal, etc).
- Fully recyclable when combined with thermoplastic or biodegradable resins.

Liquid Moulding (RTM, Infusion)

Plant natural fibers
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Composite Part
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@ TiAl offer low density, high specific strength, creep and corrosion resistance up to 800°C.
@ They can replace Ni-based superalloys in engine components, but their application is
limited by casting defects and poor microstructures, which lead to low ductility and toughness.

@ Titanium aluminides present four different phases TIAl,
TizAl, alpha-Ti, and beta-Ti, which lead to many different
microstructures (DP, NL, FL)

@ Optimum microstructures with good ductility and
toughness can be obtained by its extremely difficult to
control the casting conditions to obtain homogeneous
properties throughout the sample.

40
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@ Mg alloys are castable materials which present outstanding potential as structural
materials due to their low density (1.7 g/cm?) and good mechanical properties.
@ Their incorporation into the market has been hindered by the limitations in understanding
and controlling casting conditions to optimize the microstucture and properties.

AMBO
Ingot- Die casting
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Injection moulding

OBJECTIVES: Optimization of processing (casting) through multiscale modeling
technigues to develop novel microstructures with superior mechanical properties.




virtual
materials

@ Properties of engineering materials depend on features
which have different dimensions (from nm to mm).

Macrostructure

+ Grains
* Macroporosity Microstructure
Properties « Eutectic Phases
« High-cycle fatigue = Dendrites 1-100 nm
* Ductility * Microporosity Nanostructure
»Intermetallics  [precipitates
Properties Properties
* Yield strength mhth
» Tensile strength  , Thermal Growth 0.1-1 nm

*High-cycle fatigue , rengije strength  Atomic Structure
*Low-cycle fatigue , | gy.cycle fatigue  + Crystal Structure

* ;“m Growth . puctility « Interface Structurs
Properties
= Thermal Growth
+ Yield Strength

@ so far, engineering materials have been developed using a “trial and
error” strategy, which is very time consuming and hinders progress.
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ELECTROCHEMICAL STORAGE FOR
RENEWABLE ENERGY AND GREEN CARS

_HESCAP Target

s Adb
Manoporous metal oxides as electrodes for i - RGN,
electrochemical capacitors (HESCAP project). i o ACPBO,
*Nanostructured anodes for lithium-ion batteries o s e G
‘Redox flow batteries for solar dish/Stirling E ::.:.:c
systems. - Lo SERR
«Carbon electrodes coated with nanoparticles . o I it e
for capacitive water deionization. Y it

SOLAR FUELS AND CHEMICALS VIA THERMOCHEMICAL CYCLES

*Porous materials (foams, wire mesh, ceramic
monaoliths) for high flux/temperature solar absorbers
(above 2 MW/m? and 1000°C).

*Hydrogen production from thermochemical cycles
(metal/oxide, mixed ferrites, doped Ce oxide)

»CO, capture and valorisation via solarized thermo-
chemical cycles.




COy-FREE HYDROGEN PRODUCTION BY CH, DECOMPOSITION

*Transition Metal based catalysts: —
Bulk (Spinel, Perovskite); Supported (Carbon, ZrO,) ﬁ UViVis
PHOTOCATALYTIC PROCESSES b ki

CO, + H,0

‘H, production by water splitting
*CO, removal and valorisation

Catalytic systems based in semiconductor materials.

BIOLOGICAL HYDROGEN PRODUCTION

» Development of a biological sensor for hydrogen
- Enzymatic H, production by nitrogenase
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