ICMAB

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA

Xavier Obradors Director ICMAB – CSIC

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

Where are we?

PARC DE RECERCA UAB

Bellaterra campus (Univ. Aut. Barcelona, 20 km)

ICMAB RESEARCH ACTIVITIES

Battery materials

New materials, alternative mechanisms

PCT application ES03/00249 J. Electrochem. Soc. 152(11), (2005) Inorg. Chem. (submitted)

High T batteries

Electrochem. Comm. 9, 708 (2007))

Correlation microstructure-electrochemical yield

Journal of the American Chemical Society, 129, 5840 (2007) Journal of Materials Chemistry 16, 2925 (2006)

Nitride materials with photocatalytical activity in the visible range

Nitrogen doping of oxides decreases the band gap because of the lower electronegativity of N vs O, shifting the photocatalytical activity from the UV to the visible range

Mesoporous nanostructured thin films of $TiO_{2-x-y}N_x$ (anatase) N1s XPS as a function of the nitriding temperature in NH₃ (a) N bonded to Ti 900C XPS intensity (a.u.) 800 C 700 C 600 C 500 C 392 400 402 404 406 408 410 390 394 396 398 binding energy (eV) The mesostructure is kept until T=700 °C 125 nm Advanced Functional Materials, 17, 3348 (2007)

New nitrogen doped ceria (CeO₂) with photocatalytical activity in the visible range 400.1 e\ N1s Solid solution $CeO_{2-x-v}N_x$ up to XPS intensity (a.u.) N bonded 4.5 mol % N binding energy (eV) Rate of CO₂ evolution for decomposition of acetaldehyde as a function of irradiation λ over N-doped CeO₂ films Rate of CO₂ evolution (ppm/h.cm² 5 4 3 2 600 500 550 300 350 450 400 Cut-off wavelength (nm) Chemistry of Materials, 2, 1682 (2008) A.Fuertes, A.B.Jorge. Pat. Esp. 200700482. 23-02-2007.

Hydrogen by Ethanol Reforming

Catalyst grown on cordierite substrate: Nanocomposited silica aerogel with cobalt nanoparticles (blue in the idealized inset).

The catalytic device can be simply heated up to the reaction temperature (320-340°C) under air, and then the ethanol is introduced for the generation of hydrogen.

 $C_2H_5OH\,+\,3H_2O\,\rightarrow\,6H_2+2CO_2$

The catalytic device can be easily operated and doesn't require special care for shut down cycles, thus allowing interrupted and/or oscillating operation for real practical application. No activation and/or conditioning are required for operation.

 $Co-SiO_2$ aerogel-coated catalytic walls for the generation of hydrogen, M.Domínguez, E.Taboada, E.Molins, J.Llorca, Catalysis Today (2008) and CSIC-UPC patent (2007)

Chemical solution approaches to self-assembled and nanocomposite superconducting films

ісмав Хадтае

Xavier Obradors

T.Puig, A. Pomar, A. Palau, F. Sandiumenge, S. Ricart, N. Mestres, J. Gutiérrez, M. Gibert, A. Llordés, A. Carretero, C. Moreno, R.F. Luccas, J. Zabaleta, F. Martínez, P. Abellán, N. Romà, A. Benedetti, J. Gázquez, M. Coll, R. Vlad, X.Granados

> Institut de Ciència de Materials de Barcelona, CSIC, 08193 Bellaterra, Spain

HIPERCHEM

POWER APPLICATIONS SUPERCONDUCTORS

CSIC

ICMAB

COATED CONDUCTORS ARCHITECTURE

Cap layer : Ag

thickness \approx 0.2 - 0.5 μm

SC layer : YBCO $\sim 1.0 \ \mu m$

Buffer layers : CeO2 , YSZ, STO,... ~ 0.1 μm

Metallic substrate: RABiTS Ni, SS-IBAD

thickness ~ 80 μ m

Nanostructure control on km length materials

GOALS

- The potentiality and richness of chemical solution methods for growth of nanostructured films and coated conductors:
 - A flexible, scalable and controllable bottom-up approach
- Nanostructured YBCO films by chemical routes
 - Interfacial nanostructured films
 - Nanocomposites
 - Ferromagnetic-superconductor nanostructured YBCO films
- Methodology to analyze vortex pinning based on angular dependent transport J_c measurements

APS : Artifical Pinning Structures

Pinning of vortices by material defects

 $F_L = J_c \times B = F_p \rightarrow v_{fl} = 0$

Current flow without dissipation

HOW ?

... by nanostructuration

Generation of APS

The methodology must be versatile, scalable and low cost

We choosed a chemical solution route

NEED of:

- Manipulation, control and tuning of APS
- \bullet Correlation of nanostructured films with $\rm J_{c}$
- Knowledge on superposition of APS and natural defects
- More realistic theoretical pinning models considering complexity

Chemical Solution Deposition

... a versatile, scalable and low cost methodology for growth of nanostructured films

Coated conductors

- > Low-cost methodology
- > High production rate
- Scalable to large surfaces
- > Versatile: nanostructuration

Phase and growth control

Film quenched before growth

- Intermediate phases: a-Y₂O₃, Y₂Cu₂O₅ and CuO embedded in oxyfluorides (OF)
- YBCO nucleates exclusively at the interface: island to layer growth

Y long and winding road: TFA-Y / $Ba_{1-x}Y_{x}F_{2}$ / $a-Y_{2}O_{3}$ / $Y_{2}Cu_{2}O_{5}$ / $Ba_{1-x}Y_{x}(F,O)_{2-y}$ / $YBa_{2}Cu_{3}O_{7}$

Multilayers: Epitaxy and cap layer planarity

77

Growth of TFAYBCO on MOD CeO₂ cap layers

Growth of TFAYBCO on MOD-cap metallic substrates

Polycrystalline substrate/epitaxial multilayer

> ∆φ (YBCO) =5° ∆φ (YSZ) =9.5°

MOD planarization High SC performances

J_c (77K)= 1.8 MA/cm²

European High Temperature Superconductors A member of Bruker Biospin

Vortex pinning in MOD-YBCO films

ICMAB

High quality epitaxial films $J_c^{sf}(77K) \sim 4 \text{ MA/cm}^2$

Island based nucleation and growth mode \rightarrow a-b plane defects promotion

- Intergrowth
- Stacking faults
- in-plane partial dislocations

Critical current optimization \rightarrow at high fields (1- 5T)

Correlation nanostructure and vortex pinning

Pinning defects of specific size and disposition

MOD-YBCO, *t* ≈ 275 *nm*

J.Gutierrez et al., Appl. Phys. Lett. 90 (2007)

Pinning regime diagrams in standard TFA films for H//c

We have a tool to separate and quantify the three vortex pinning contributions

Weak-isotropic defects dominate at low T, strong-isotropic defects at intermediate T and strong-anisotropic defects at high T

T.Puig et al., SUST 21, 034008 (2008)

Vortex pinning in nanostructured YBCO-TFA films

Interfacial nanostructured films:

Nanocomposite films:

Approach:

AIM: Identify and control pinning contributions induced in the different nanostructured YBCO films

Nanostructures: Chemical Solution Deposition

complete layer ~1nm Self-assembled nanoparticles

Surface energy Interface energy Elastic relaxation energy

Interfacial self-assembled nanostructured films

CSIC

ICMAB

Self-assembled nanostructures grown from chemical methods

Strain induced self-assembled Ce_{0.9}Gd_{0.1}O_{2-y} nanowalls Spontaneous nucleation of (La,Sr)O_x nanoislands on LSMO

Nanodot and nanowires of Ce_{0.9}Gd_{0.1}O_{2-y}

ICMAB

Highly anisotropic islands

Interfacial oxide nanostructured films: Anisotropy of $J_{c}(\theta)$ M **Reduced anisotropic** - CGO contribution for H//ab (La,Sr)O, dots anis (La,Sr)O pyramids Standard CGO 01 10 0.1 - (La,Sr)O, dots - (La,Sr)O_x pyramids anis $I_{c}(MA/cm^{2})$ 0.01 υ 77K 1E-3 8 $\mu_0 H//c (T)$ 1E-4 c-axis anisotropic 1E-5 contribution is T=77K, μ₀H=7T strongly increased 1E-6 140 160 180 200 220 80 120 100 θ(°)

Similar behavior obtained for all the different architectures \rightarrow defects along the c-axis induced in the YBCO matrix by the interfacial particles

J. Gutierrez et al., APL (2009)

Angular measurements

θ (deg) Enhanced c-axis anisotropic contribution as thickness decreases

Pinning associated to defects induced by interfacial nano-particles is enhanced by reducing the YBCO thickness \rightarrow Higher density of defects generated near the nanostructures

In-situ YBCOTFA-BZO nanocomposites

Modification of the (Y,Ba,Cu) precursor solution by addition of Ba and Zr salts: BaZrO₃ nanodots randomly embedded

ICMAB

BZO nanodots size : 10-20 nm

Two populations of BZO coexist

Epitaxial Non epitaxial

J. Gutiérrez, A. Llordés et al., Nature Materials 6, 367 (2007)

YBCOTFA-BZO nanocomposites

Modification of the (Y,Ba,Cu)TFA anhydrous precursor solution by addition of Ba and Zr salts

Film thickness= 200 (20) nm

Interfacial nanodots

cube on cube epitaxial relationship with YBCO matrix

J. Gutiérrez, A. Llordés et al., Nature Materials 6, 367 (2007)

(non-coherent with the matrix)

In-situ YBCO^{TFA}-Y₂O₃ nanocomposite

Epitaxial Y_2O_3 at the substrate interface and in the bulk

ε**=-2.7 %**

J_c(1T, 77K)=0.5 MA/cm² for 20 %mol

J_c(1T, 77K)=0.3 MA/cm² for 10 %mol

Y₂O₃ polycrystalline fraction is also present...BUT not identified by TEM

(001)Y₂O₃ // (001)YBCO [110]Y₂O₃ // [100]YBCO

Need of quantification of non-coherent (or random) fraction

Average size Y_2O_3 : 20-25nm

Interfaces in nanocomposites

> Can be divided, on the basis of their lattice matching, into three classes

Interfacial energy

 $\{hkl\}_A //\{hkl\}_B with < uvw >_A // < uvw >_B$

Analogy interphase-grain boundaries AB

Interphase boundary

High interfacial energy

Nano-structural defects formation

- Stacking faults
- Chemical heterogeneities
- Twinning
- Dislocations
- Point defects
- Microstresses

Lattice strain (XRD)

$J_{c}(\theta)$ anisotropy is reduced in the Nortex pinning is controlled by isotropic defects

ICMAB

Pinning regime diagrams

- Chemical solution deposition is a versatile technique to generate artificial pinning structures.
 Complementariry with PLD?
- The methodology to analyze vortex pinning contributions can be used for PLD nanocomposites.
- Interfacial nanostructures are successfully grown by CSD and c-axis anisotropic defects are artificially introduced in YBCO films. Can be combined with PLD?
- CSD nanocomposites are very promissing, vortex pinning is controlled by strain generated by isotropic defects. Strain in self-organized PLD nanorods?
- Magnetic nanostructures have been introduced in YBCO films showing an enhancement of vortex pinning
- We need to use the nanoscale imaging methods to correlate vortex pinning with APC

