Cation Vacancies in Nitride Semiconductors: A Possibility of Intrinsic Ferromagnetism

GaN, InN & AlN:
Direct-gap Semiconductors with band gaps,

Environment-friendly semiconductors for optoelectronic devices

But that’s not all
Ferromagnetic behavior in GaN doped with magnetic impurity

- Hysteresis has been observed even at Room temperature in Gd-, Cr-, Eu-doped GaN
- Gigantic magnetic moment of 4000 μ_B per Gd atom in epitaxially grown sample, and more in implanted sample (cf. Gd atom 8 μ_B)

Something fascinating but puzzling

\Rightarrow Role of Vacancy?
GGAs (+ U) Calculations for Atomic Vacancy in Gd-doped and undoped GaN and other Nitrides

- **Consider:**
 - Atomic structure, electron states and spin states of mono-, di- and tri-vacancy for various charge states?
 - Interaction among vacancies and Gd atom?

- **Have found:**
 - Cation mono-vacancy, di-vacancy and tri-vacancy are spin-polarized.
 - They interact ferromagnetically and thus likely to be responsible for gigantic magnetic moment.

\[Gd: (4f)^7(5d)^1(6s)^2, 8\mu_B \]

\[Vc: (\text{degenerate gap state})^3, 3\mu_B \]
Some details of \textit{GGA (+ U)} calculations

- \textit{Ga: (3d), (4s), (4p), N: (2s), (2p)} and \textit{Gd: (5s), (5p), (4f), (5d), (6s)} as valence states
- Core states treated in PAW scheme
- \textit{GGA} by Perdew, Burke and Ernzerhof
- Hubbard \textit{U (6.7 eV)} and \textit{J (0.7 eV)} for 4f states following the work in the past
- Plane-wave basis set with 400 eV cutoff
- Supercell model with 96 - 576 atomic sites
Vacancies in Si

Symmetry-lowering (Jahn-Teller) distortion makes it stable

Symmetry-lowering, pairing or resonant-bond distortion makes it stable

Quantitative agreement:
Sugino & Oshiyama, PRL (1992);
Saito & Oshiyama, PRL (1994);
Ogut & Chelikowski, PRL (1999)

Rebonding that gains covalent energy, though cost of distortion, is a principal factor
Vacancy in GaN

Defect levels in GaN

\[V_{Ga} \quad V_N \quad V_{Ni} \]

Neugebauer & Van de Walle: PRB (1994)

Formation energies

\[\text{Covalent radii:} \]
\[0.75 \text{ Å (N)} \]
\[1.26 \text{ Å (Ga)} \]
\[1.44 \text{ Å (In)} \]
\[1.18 \text{ Å (Al)} \]

Then, what has been overlooked is:
Exchange interaction among gap states originated from N dangling bonds

\[\Rightarrow \]
Possibility of spin polarization
Spin-Polarized Cation Vacancy in Nitrides

V_{Ga} in GaN

- Nearly degenerate 3-fold defect levels near valence-band top split due to exchange interaction, causing spin polarization with $\mu = 3\mu_B$
- Energy gain due to spin polarization ≈ 0.5 eV ~ 0.9 eV
- V_c is a magnetic "imperfection" with the configuration of (the gap state)3

V_{Al} in AlN

- Electron orbitals responsible for spin
- Electron
- Orbitals
- Responsible
- For spin

In$_{0.5}$Ga$_{0.5}$N

- Same was found in In$_{0.5}$Ga$_{0.5}$N
Structural Bistability in Divacancy: Exchange Splitting vs Electron Transfer through Breathing Relaxation

Outward breathing relaxation: +0.37 Å Ga levels shift upward, and then electron transfer

Inward breathing relaxation: -0.11 Å Ga levels shift downward and occupied, and then exchange energy gain at N dangling bonds
Which Structure? How much is the Spin?

Type A

Type B

Neutral: $E_A < E_B$ by 0.2 eV

Neutral & Positive: Type A

Negative: Type B

Conversion from Type A to Type B makes $\varepsilon(0/-2)$ much lower than 1.7 eV, constituting negative U system
Trivacancy: Charge-state dependent spin center

Neutral $V_{Ga-N-Ga}$ Trivacancy $\mu = 3 \mu_B$

Electron orbital responsible for spin polarization

Antiferromagnetic config between the 2 V_{Ga} is less stable than ferromagnetic config by an order of 10 meV, depending on the charge state.

Electron orbital with cation character
Gd 4f is spin polarized in GaN: \(\mu = 7.0 \mu_B \)

- Gd 5d electrons contribute to chemical bonding with N
 - Electronic structure remains semiconducting
- Gd 4f states are half-filled and spin polarized
 - \(\mu = 7.0 \mu_B \)
Ferromagnetic Coupling between Gd and 2 V_{Ga}

- N-related defect states in the band gap as in V_{Ga}
- Outward breathing relaxation for both V_{Ga} and Gd: No Jahn-Teller Effect

- Ferromagnetic interaction among 2 V_{Ga} and Gd, resulting in $\mu = 13.00 \mu_B$
Magnetic Moment Increases with Increasing Number of V_{Ga}

- Linear increase in μ with the number of V_{Ga}
 - Due to 3 holes arising from V_{Ga} with the minority spin
- Gigantic magnetic moment observed in experiments
 - Highly attributable to magnetism due to Ga vacancies
Energetics among Several Spin Configurations

Ferromagnetic configuration most stable, even for the case without Gd: $\Delta E_{\text{AFM-FM}}=1.12$ eV

⇒ Indicative of intrinsic ferromagnetism due to Ga vacancies
Ferromagnetic vs Antiferromagnetic:

\[\Delta E = E_{AFM} - E_{FM} \]

<table>
<thead>
<tr>
<th>Spin Configuration</th>
<th>(E) (meV)</th>
<th>(\mu) ((\mu_B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd(\uparrow)Gd(\uparrow)V({Ga})(\uparrow)V({Ga})(\uparrow)</td>
<td>0</td>
<td>10.00</td>
</tr>
<tr>
<td>Gd(\uparrow)Gd(\uparrow)V({Ga})(\uparrow)V({Ga})(\downarrow)</td>
<td>272</td>
<td>7.00</td>
</tr>
<tr>
<td>Gd(\uparrow)Gd(\downarrow)V({Ga})(\uparrow)V({Ga})(\uparrow)</td>
<td>41</td>
<td>3.00</td>
</tr>
<tr>
<td>Gd(\uparrow)Gd(\downarrow)V({Ga})(\uparrow)V({Ga})(\downarrow)</td>
<td>233</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Site arrangement

<table>
<thead>
<tr>
<th>Site arrangement</th>
<th>(d) [A]</th>
<th>(\Delta E) [meV]</th>
<th>(\mu_{FM}) [(\mu_B)]</th>
<th>(\mu_{AFM}) [(\mu_B)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>V({Ga})A(\rightarrow)V({Ga})B</td>
<td>8.30</td>
<td>9</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>V({Ga})A(\rightarrow)V({Ga})C</td>
<td>6.43</td>
<td>-18</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>V({Ga})A(\rightarrow)V({Ga})D</td>
<td>4.53</td>
<td>19</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>V({Ga})A(\rightarrow)V({Ga})(\rightarrow)A(_{perp})</td>
<td>10.48</td>
<td>2</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>V({Ga})A(\rightarrow)V({Ga})(\rightarrow)A(_{palla})</td>
<td>11.14</td>
<td>1</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>V({Ga})(\rightarrow)V({Ga}) (ZincBlende)</td>
<td>9.09</td>
<td>-33</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Gd({A})(\rightarrow)Gd({B})</td>
<td>8.30</td>
<td>0.0</td>
<td>14.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Gd({A})(\rightarrow)V({Ga})(\rightarrow)B</td>
<td>8.30</td>
<td>1</td>
<td>10.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Gd({A})(\rightarrow)V({Ga})(\rightarrow)C</td>
<td>6.43</td>
<td>38</td>
<td>10.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Gd({A})(\rightarrow)V({Ga})(\rightarrow)D</td>
<td>4.53</td>
<td>1</td>
<td>10.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Generally, ferromagnetic favored!

2 Gd + 2V\(_{Ga}\) with the distances of 6.43 A and 8.30 A

2 Spins at various sites at the distance \(d \)

Cation sites depicted above
Possible Origin of Ferromagnetism

- RKKY (Ruderman-Kittel-Kasuya-Yosida) interaction through carriers, postulated for magnetic semiconductors in the past, are unlikely. **No free carriers in the present case**

- Coupling of V_{Ga} spin in wurtzite network through small covalency is certainly important

???
To Conclude,

- **GGA calculations have clarified:**
 - Cation mono-vacancy, di-vacancy and tri-vacancy in GaN are spin-polarized, depending on their charge states.
 - Divacancy shows structural bistability caused from exchange splitting and electron transfer accompanied with breathing distortion.
 - The vacancy spins interact ferromagnetically, indicating intrinsic ferromagnetism in GaN, and thus likely to be responsible for gigantic magnetic moment observed.

Gohda & Oshiyama: PRB 78, 161201(R) (2008) & unpublished results