

Ingrid Mertig

Martin-Luther-Universität Halle, Germany

Outline

- Ab initio calculations
- Tunneling magnetoresistance on the sub-nanometer scale
- Multiferroic interfaces and magnetoelectric coupling
- Magnetic molecules
- Summary

Ab initio calculations

Green function method

- Kohn-Sham equation $\mathcal{H} |\Psi_k\rangle = \left(\mathcal{T} + \mathcal{V}_{eff}\right) |\Psi_k\rangle = E_k |\Psi_k\rangle$
- Green's function

$$\left(E-\hat{\mathcal{H}}\right)\hat{\mathcal{G}}=1$$
 $(E-\mathcal{H})\mathcal{G}=1$

• Dyson equation

$$\mathcal{G} = \bar{\mathcal{G}} + \bar{\mathcal{G}} \Delta \mathcal{V}_{eff} \mathcal{G}$$
$$\Delta \mathcal{V}_{eff} = \mathcal{V}_{eff} - \bar{\mathcal{V}}_{eff}$$
$$N scaling!$$

The power of Green functions

Nanocontact

Surface

 $\mathcal{G}_{imp} = \mathcal{G}_{surf} + \mathcal{G}_{surf} \Delta V \mathcal{G}_{imp}$

Tunneling magnetoresistance

Peter Zahn

Martin Gradhand

Christian Heiliger

Tunneling magnetoresistance TMR $TMR = (g^{P} - g^{AP}) / (g^{P} + g^{AP})$ -B

M. Julliere, Phys. Lett. **54A**, 225 (1975) J. S. Moodera et al., Phys. Rev. Lett. **74**, 3273 (1995)

TMR > 1000 %

W. H. Butler et al., Phys. Rev. B 63, 054416 (2001)
G. Mathon et al., Phys. Rev. B 63, 220403(R) (2001)
C. Heiliger et al., Phys. Rev. B 72, 180406(R) (2005)

High quality MgO barriers

S. Yuasa et al., Nature Materials 3, 868 (2004)

[3] Parkin: Nature Materials 3, 862 (2004).

[4] Djayaprawira: Appl. Phys. Lett. 86, 092502 (2005).

Role of the electrodes

TMR – 1ML of Fe and amorphous Fe electrodes

Conductance for P and AP configuration

Conductance for P and AP configuration

Amorphous versus free electron like electrodes

Kyoto

January 23, 2009

Multiferroic interfaces

Igor Maznichenko

Sergey Ostanin

Michael Fechner

Arthur Ernst

Multiferroic interfaces

Magnetic layer

Ferroelectric oxide

BaTiO₃

Magnetoelectric coupling

MagnetisationExternal magnetic fieldM \longleftarrow B \prod P \uparrow \uparrow E \downarrow \uparrow \uparrow P \downarrow \downarrow

Electrical polarisation

External electric field

One monolayer of Fe on BaTiO₃

Magnetic order of Fe on BaTiO₃

Charge transfer from Fe to Ti under switching

Change of charge on the Fe layer:

 $\Delta q = 0.56 e$

 $\Delta M=0.13~\mu_B$

M. Fechner et al., PRB 78, 212406 (2008)

Charge transfer from Ti to Fe

Magnetic order in the Fe layer on $BaTiO_3$

antiferrimagnetic

M. Fechner et al., PRB 78, 212406 (2008)

 $E_c \approx 10 kV/cm$

January 23, 2009

Magnetic molecules

K. Miyajima, et al. Eur. Phys. J. D 34 177 (2005)

Organometallic benzene-vanadium wires

ferromagnetic

half-metallic

W. Maslyuk et al. PRL 97, 097201(2006)

Organometallic benzene-vanadium wires

Charge density

Spin density

W. Maslyuk et al. PRL 97, 097201(2006)

Stretching

Low spin - high spin transition

Low spin - high spin transition

Transport through the molecule

Transport through V_nBz_n+1 between Co(100) electrodes

Transport through $V_n Bz_n + 1$ between Co(100) electrodes

Transport through $V_n Bz_n + 1$ between Co(100) electrodes

Transport through $V_n Bz_n + 1$ between Co(100) electrodes

Bias dependence

 $Co(100)-V_4Bz_5-Co(100)$

Summary

- Tunneling current and TMR effect are tailored by the interface between oxide barrier and first layer of the electrodes!
- Ferroelectricity changes at the surface!
- We predict magnetoelectric coupling via the interface caused by charge transfer!
- Organometallic contacts show pronounced spin-dependent transport

Collaborations and funding

A. Ernst, J. Henk, L. Sandratski,
V. Stepanyuk, MPI Halle
P.H. Dederichs, R. Zeller, FZ Jülich
F. Evers, A. Bagrets, FZ Karlsruhe
W. Hergert, MLU Halle
M. Scheffler, FHI Berlin

P. Bruno, Grenoble

M. Brandbyge, H. Skriver, TH Denmark

J. Kudrnovsky, Prague

P. M. Levy, New York University

- J. Staunton, University of Warwick
- M. Stiles, C. Heiliger, NIST Washington
- L. Szunyogh, TU Budapest
- W. Temmerman, Z. Szotek, Daresbury Laboratory
- P. Weinberger, TU Wien

Deutsche Forschungsgemeinschaft DFG

