3rd Japan-German Bilateral Workshop on Molecular Electronics

21-23, Jan., 2009, 烏丸 Kyoto Hotel, Japan

Supra-hierarchical nano-structured organic thin film solar cell

Institute of Advanced Energy Kyoto University Susumu Yoshikawa

Contents

- □ Insertion of TiO₂ ETL in polymer solar cell of P3HT:PCBM
- Preparation of PEDOT:PSS polymer brush as HTL in polymer solar cell
- Concept of Supra-hierarchical nano-structured cell

(Hybrid solar cell)

Biography of Organic Solar Cell & Novel Architecture of OSC with Supra-Hierarchical Nano-Structure

2006 supra-hierarchical nano-structured cell (*Yoshikawa*)

- 2004 tandem heterojunction photovoltaic cell (Forrest, Uchida)
- 2000 bulk MDMOPPV/PCBM heterojunction PV cell (Brabec)
- **1996** C₆₀-linked molecular type PV cell (*Imahori*)
- 1995 bulk MEHPPV/PCBM heterojunction PV cell (Heeger)
- **1995** bulk polymer/polymer heterojunction PV cell (Friend)
- **1994** bulk polymer / C₆₀ heterojunction PV cell (Heeger)
- **1993** polymer/ C₆₀ heterojunction PV cell (Sariciftci)
- **1991 dye-sensitized TiO₂ PV cell (Graetzel)**
- 1991 bulk dye/dye heterojunction PV cell (*Hiramoto*)
- 1990 tandem PV cell (*Hiramoto*)
- 1986 heterojunction PV cell (Tang)
- 1958 photo-induced current with MgPor (Calvin)

Topics are focused to improvements in device structures.

Introduction

Current status of polymer solar cell

• Recently high efficiencies over 5% are reported.

• Poly(3-hexylthiophene)/PCBM is commoly used as a high carrier mobility system.

• Bulk heterojunction is important for highly efficient cell-structure.

Advantages of polymer PV

- Fabrication under ambient atmosphere
- Potential low-cost manufacturing

Problems of Organic PV

- Low efficiency
- Low durability

Organic Semi-conductors

Comparison, organic and inorganic meterials

	mobility [cm²/Vs]	anisotropy	Cohesion Force
Inorganic	~1000	few times	Chemical bonding
Organic	~10	~100 times	van der Waals

organic materials:

origin of electric conduction \Rightarrow planer π -conjugated molecule

Fundamental Limitations to Organic Solar Cells

The exciton and carrier diffusion bottleneck

Since L_D is short & μ is little, there exists a trade off in thickness.

Problems

How to solve these problems?

- Using a bulk heterojunction
- Using material with long range order
- Using thin HTL and ETL with EBN and HBN
- Using tandem cells (capture more light in thin layer
- Using 1D nanostructured array for carrier path

(Supra-hierarchical nano-structured cell)

Insertion of electron transport layer (ETL) in polymer solar cell P3HT: PCBM with TiO₂ layer

Organic Thin Film solar Cell

Enhanced efficiency and stability in P3HT:PCBM bulk heterojunction solar cell by using TiO₂ as electron transport layer

Necessity of hole blocking layer in polymer cell

ТСО	\rightarrow ITO glass	
HTL	→ PEDOT:PSS	
LAL	→ P3HT:PCBM	
HTL	\rightarrow Nothing (LiF)	←TiOx層
anode]→ Al	

To achieve highly efficient charge transfer and charge collection

P3HT

Poly (3-hexyl thiophene) [P3HT]

[6,6] -phenyl C60butyric acid methyl ester [PCBM]

Poly (3,4-ethylenedioxythiophene) - poly (styrensulfonate) [PEDOT:PSS]

Necessity of HBL (hole blocking layer)

O ç

Energy diagram of TiO₂

Use of TiOx layer as optical spacer, K. Lee, et. al., Adv. Mater. 2006, 18, 572

Effects of TiO₂ film thickness on photovoltaic properties

Fig.10 Effect of TiO₂ on Efficiency (a), FF (b), Voc (c), Isc (d).

Evaluation method of organic solar cell

Simulated sun light of A.M. 1.5G 100mW/cm² was illuminated onto the cell.

Series resistance (Rs) and parallel resistance (Rp)

Equivalent circuit of solar cells.

Reduce in an internal resistance → decrease in Rs → increase in Isc

Improve of carrier selectivity → increase in Rp → increase in Voc

Rp inclease and **Rs** decrease by **TiOx** insertion

with several thicknesses.

Insertion of TiO₂ layer induced a marked increase in Rp

→ Improve of carrier selectivity

Rectification ratio

Fig.14 Method of calculating RR.

Improvement of rectification by insertion of TiO_2 layer $\rightarrow TiO_2$ layer blocks hole carriers.

Conclusions

Improved cell structure with TiO₂ layer on active layer (P3HT:PCBM) is quite promising.

TiO₂ layer acts as a hole blocking layer.

Optimal 4% conversion efficiency was obtained with very high fill factor under ambient atmospheric condition without sealing.

■ Isc of the device with TiO₂ decreased only 6% after 100 hour illumination, showing high durability under ambient atmospheric condition.

Preparation of hole transport layer (HTL) using PEDOT:PSS polymer brash

Organic Thin Film solar Cell

Rolls of Hole Transporting Layer (HTL)

PEDOT:PSS films help to planarize the ITO surface

PEDOT/PSS

- PEDOT:PSS films appear to make the ITO surface more uniformly electroactive
- PEDOT:PSS layer reduces the electrode surface polarity, making it more compatible with nonpolar components of OPVs

●PEDOT:PSS layer appears to increase the effective work function of the resulting substrate highly rectification (electron blocking) ability (large carrier mobility and/or conductivity), transparency, low resistance at the interface, and so on.

The HTL plays a key role in the OPVs.

PEDOT/PSS: What is the problem?

- Low solubility \rightarrow Hard to be processed \rightarrow Unsuitable for thin-film-making
- Dispersed in water \rightarrow Water is unsuitable for electronic manufacture such as coating
- ●Impossible to be coated on the substrate such as glass or electrode without the binder → Lack of adhesion to the substrate
- •High acidity, corrosive, absorbent material \rightarrow ITO is eroded
- No durability against water, other solvents, and scratching

PEDOT:PSS Poly(3,4-ethylenedioxythiophene)-poly(styrensulfonate)

Polymer brush

Polymer brush

Prof. Y. Tsujii, et al, Institute for Chemistry, Kyoto Univ.

Consept of supra-hierarchical nanostructured cell

Introduction of 1D nano-materials for facile carrier path in the bulk hetero-junction

• Fabricating TiO₂ nanotube array from ZnO nanorod array template

Enhance the performance of the nanorod structure of ZnO/ polymer hybrid solar cell by modifying the metal oxide surface with various dyes

Enhance the performance of the nanorod structure of ZnO/ polymer hybrid solar cell by modifying the metal oxide surface with various dyes

• The peaks of each dye can be observed before polymer deposition

• After dye treatment and polymer deposition, we can't observed any peaks of dye treatment

Enhance the performance of the nanorod structure of ZnO/ polymer hybrid solar cell by modifying the metal oxide surface with various dyes

Structure : FTO/ZnO/P3HT:PCBM/Ag

Polymer : P3HT:PCBM (30:18 mg/ml) Speed of spinning : 1000 rpm Anealed : 140 °C 5 min Electrode : Ag

dyes	n [%]	FF	Voc[V]	Jsc[mA/cm2]
Eosin-Y	2.43	0.46	0.57	9.28
D149	2.71	0.47	0.58	9.87
NKX-2677	2.63	0.48	0.58	9.57
N719	2.13	0.4	0.55	9.68
Without dye	1.06	0.37	0.54	5.29

- The significantly improve in performance of device after dye treatment
- Surface treatment with ruthenium dye (N719) show the low FF value compared to other dyes

- Surface treatment with D149 show the high performance in Jsc of 9.87 mA/cm², Voc of 0.58V, FF of 0.47, and η of 2.71%

Japanese PV Roadmap until 2030

Research Target: Organic Solar Cell for Roof Top Module

2nd Generation (low cost) for Market Application 3rd Generation (high efficient) for Long Target 1st Target [Year 2015] Module effic.: 10 % Cell Cost: 75Yen/W Power Cost: 14Yen/kWh