

Nanopowder thermoelectrics: improved energy conversion by nanostructuring

Sabine Schlecht

DFG-JST Workshop Kyoto, 20.- 23. January 2009

Thermoelectric effects

interconversion of thermal and electrical energy

Seebeck 1821:

difference in potential from a difference in temperature (TE generator)

Peltier 1834:

difference in temperature from a difference in potential (cooling)

Fields of application for TE converters

RTG-New Horizons

Woodstove with TEG

Nanoscale Thermoelectrics

Efficiency of TE conversion (Altenkirch 1909): figure of merit $ZT = (S^2 \cdot \sigma)/\kappa$

Changes of TE parameters on the nanoscale

Effects of nanostructuring on ZT

Super lattices of layers and quantum dots

pioneered by Harman, Venkatasubramanian

Reduction of the thermal conductivity by phonon scattering

R. Yang, G. Chen, M. S. Dresselhaus

Types of nanocomposite powders

TE data for nano-Bi_{0.5}Sb_{1.5}Te₃

TE data for nano-Bi_{0.5}Sb_{1.5}Te₃

 $\rightarrow \sigma$ (nano) slightly higher than σ (bulk)

- \rightarrow κ (nano) significantly lower than κ (bulk)
 - effective phonon scattering at a large number of grain boundaries
 - doping level and structural defects
- → Improvement of the figure of merit $ZT (nano) (200^{\circ} \text{ C}) = 1.1$ $ZT (bulk) (200^{\circ} \text{ C}) = 0.4$

B. Poudel, Q. Hao, Y. Lan, A. Minnich, Z. Ren, Science, 2008, 305, 638.

Nanoscopic de-mixing: formation of a nanocomposite (LAST materials)

M. G. Kanatzidis, Michigan State

Syntheses from activated elements

Tellurides

$$Pb^{*} + Ph_{2}Te_{2} \xrightarrow{165^{\circ} C} nc-PbTe + Ph_{2}Te$$

$$2 Sb^{*} + 3 Ph_{2}Te_{2} \xrightarrow{165^{\circ} C} nc-Sb_{2}Te_{3} + 3 Ph_{2}Te$$

$$Antimonides (solid-solid reactions)$$

$$4 Zn^{*} + 3 Sb^{*} \xrightarrow{300^{\circ} C/275^{\circ}} C nc-Zn_{4}Sb_{3}$$

$$Zn^{*} + Sb^{*} \xrightarrow{300^{\circ} C} nc-ZnSb$$

$$Co^{*} + 3 Sb^{*} \xrightarrow{300^{\circ} C} nc-CoSb_{3}$$

ZnSb nanopowders (13 nm)

particle size ~ 13 nm

Compacting and TE data for nc-ZnSb

Compacting and TE data for nc-ZnSb

- Uniaxial hot-pressing (450° C, 100 MPa): stable samples with a density of 4.9 g/cm³
- Seebeck coefficient S = $253 \pm 2 \mu V/K$ (bulk: 196 $\mu V/K$)^[1]

ZT (293 K) = 0.100 nc-ZnSbZT (293 K) = 0.044 bulk-ZnSb

ZT (nano) = 2.2 ZT (bulk)

^[1] P. J. Shaver, J. Blair, *Phys. Rev.* **1966**, *141*, 649.

^[2] L. T. Zhang, M. Tsutsui, J. All. Comp. 2003, 358, 252.

Influence of the method of compacting: ZnSb (20 nm)

 \rightarrow Improved stability of data with prolonged synthetic procedure

Ternary Phases in the System PbTe - Sb₂Te₃

 $x \text{ nc-PbTe} + \text{ nc-Sb}_2\text{Te}_3 \xrightarrow{400^\circ\text{C}, 17 \text{ h}} \text{Pb}_x\text{Sb}_2 \equiv \text{Te}_{x+3}$ (x = 20,10)

Summary and Outlook

- Thermoelectric energy conversion shows excellent potential for future recovery of waste heat in industry, vehicles and household
- → current and further miniturization allow the use of TE converters for sensing, communication, integrated systems and in biomedical industries
- → nanostructuring of good TE semiconductors has already shown the potential for a ZT of 2 that is required for widespread application
- → the need for more efficient energy recycling will also lead to relevant discoveries in the field of fundamental research (natural sciences and engineering)

Acknowledgement

Coworkers D. Petri I. B. Angelov *M. Artamonowa C. Erk* M. Roskamp W. Meng B. N. Ghosh C. Rohner **Cooperations**

Dr. M. Steinhart (MPI Halle) Prof. Dr. B. Koksch (FU Berlin) Prof. Dr. H.-U. Reißig (FU Berlin) Dr. J. Dernedde (Charité, Berlin) Dr. H. Böttner, Dr. D. Ebling (Fraunhofer IPM, Freiburg) Dr. E. Müller, C. Stiewe (DLR Köln)

Funding

Deutsche Forschungsgemeinschaft (SFB 765, SPP 1165, SPP 1386) Fonds der Chemischen Industrie (to C.E.)

