

Two Dimensional Electron Gases at Oxide Interfaces

Jochen Mannhart

Center for Electronic Correlations and Magnetism University of Augsburg

JST-DFG Workshop on Nanoelectronics, Kyoto, Jan. 21, 2009

G. Hammerl
A. Herrnberger
R. Jany
T. Kopp
C. Richter
C.W. Schneider
S. Thiel
Augsburg University

D.G. SchlomM. WarusawithanaPenn State University

N. Reyren A.D. Caviglia S. Gariglio D. Jaccard J.-M. Triscone University of Geneva

L. Fitting-Kourkoutis D. Muller *Cornell University*

C. Cen J. Levy University of Pittsburgh

DFG: SFB 484, EC: Nanoxide

2-DEGs Can Be Realized in Oxides

The *n*-type LaAlO₃ / SrTiO₃ Interface

LaAIO₃ band-insulator

 $LaTiO_3$

SrTiO₃ band-insulator, quantum-paraelectric

A. Ohtomo, H. Hwang, Nature <u>427</u>, 423 (2004)

Sample Configuration

Contacts via ion-etching and Au-sputtering

8 unit cells LaAlO₃ on SrTiO₃

	σ _s (Ω/□)-1	<i>n</i> _S (cm ⁻²)	µ (cm²/Vs)
300 K	5×10 ⁻⁵	2-4×10 ¹³	7
4.2 K	5×10 ⁻³	2-4×10 ¹³	700

STEM: Cross Section

HAADF

LAADF

L. Fitting-Kourkoutis, D.A. Muller (Cornell)

Interface Conductivity vs Number of LaAIO3 Unit Cells

reproduced by Chalmers, Geneva, Naples, Stanford, Tokyo, Twente S. Thiel *et al.*, Science **313**, 1942 (2006) The Polar Catastrophe is another Possible Source of Charge Carriers

N. Nakagawa et al., Nature Materials (2006)

Patterning the Electron Gas

- interface is not exposed to environment
- surface remains unexposed
- compatible with standard lithography techniques

Schneider et al., APL 89, 122101 (2006)

LETTERS

Mapping the spatial distribution of charge carriers in LaAIO₃/SrTiO₃ heterostructures

M. BASLETIC*, J.-L. MAURICE, C. CARRÉTÉRO, G. HERRANZ*', O. COPIE, M. BIBES, É. JACQUET, K. BOUZEHOUANE, S. FUSIL AND A. BARTHÉLÉMY'

Unité Mixte de Physique CNRS/Thales, Associée à l'Université Paris-Sud, Route départementale 128, 91767 Palaiseau Cedex, France * Current address: Department of Physics, Faculty of Science, University of Zagreb, HR-10002 Zagreb, Croatia (M.B.); Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra 08193, Catalonia, Spain (G.H.) 1e-mail: gherranz@icmab.es; agnes.barthelemy@thalesgroup.com

nature materials | VOL 7 | AUGUST 2008 |

Profiling the interface electron gas of LaAlO₃/SrTiO₃ heterostructures by hard X-ray photoelectron spectroscopy

M. Sing,¹ G. Berner,¹ K. Goß,¹ A. Müller,¹ A. Ruff,¹ A. Wetscherek,¹ S. Thiel,² J. Mannhart,²
S. A. Pauli,³ C. W. Schneider,³ P. R. Willmott,³ M. Gorgoi,⁴ F. Schäfers,⁴ and R. Claessen¹
¹Experimentelle Physik 4, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
²Institute of Physics, Universität Augsburg, Electronic Correlations and Magnetism, Experimentalphysik VI, Universitätsstrasse 1, D-86135 Augsburg, Germany
³Paul Scherrer Institut, CH-5232 Villigen, Switzerland
⁴Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m.b.H., Albert-Einstein-Str. 15, D-12489 Berlin, Germany

FIG. 4: (Color online) Comparison between experimental data and simulated spectra of the Ti $^{3+}$ spectral weight for the annealed 4 uc sample.

Low Carrier Density at the Interfaces ~2-4×10¹³/cm²

TiO₂-plane

TIO

↔ 3.9 Å

Gate-Field Induced Phase Transition to 2-DEG?

Field Effect Experiments - Top Gate

Field Effect Tuning of the Interface Properties

Measured Phase Diagram of the LaAIO₃/SrTiO₃ Interface

A.D. Caviglia et al., nature 2008

Electric Field Lithography

induce insulator-metal transition locally

Nanowires

an be written and erased repeatedly
are stable at 300 K for > 24 h (but not always)

C. Cen et al., Nature Materials 7, 298 (2008)

Electric Field Lithography

induce insulator-metal transition locally

written wires with nanotube diameter

Nanowires

an be written and erased repeatedly
are stable at 300 K for > 24 h (but not always)

C. Cen et al., Nature Materials 7, 298 (2008)

Possible Writing Mechanism

C. Cen et al., Science in press

LaAlO₃/SrTiO₃

YBa₂Cu₃O₇

LaAlO₃/SrTiO₃

(AIGa)As/GaAs Heterostructure