JST – DFG Joint Workshop January 21, 2009

Atomic level material processing and characterization for nanoscale CMOS transistors

Toshihiko Kanayama Nanodevice Innovation Research Center, AIST, Japan MIRAI project

New Materials and Structures for Ultra-scaled MOSFET

Keeping loff low and enhancing lon by optimal selection of materials and structures

Increasing Requirements for Metrology and Characterization Technology

Major Issues

- Technology boosters, i.e., new materials/structures and processes are rushing into semiconductor technology.
- Variability increases.

To implement new technologies while minimizing variation, reliable characterization and metrology technologies are crucially needed.

Contents

For the fabrication of Nano CMOS Transistors What do we need?

- Gate stack (Gate dielectrics and electrode)
- · Channel
- Source/Drain

Towards EOT (equivalent oxide thickness) =0.5nm

Control of threshold voltage

Contents

For the fabrication of Nano CMOS Transistors What do we need?

- Gate stack (Gate dielectrics and electrode)
- Channel: Surface flatness

AIST Atomically flattening of Si surfaces

Atomic Precision CD Metrology by AFM

Surface hydrophilicization

IRAI

Si passivation for Gate stack, NiGe Metal S/D

Velocity

Yamamoto et al. IEDM, 2007

IRAI Uni-axially Strained Multi-Gate CMOS Transistors

T. Irisawa et al. IEDM, 2006

T. Irisawa et al., IEDM, 2005

NBD (NanoBeam electron Diffraction)

Confocal/probe-excited UV Raman microscope for local strain analysis IRAI

Raman Measurements on (110) Cross Section of STI Structure

Contents

For the fabrication of Nano CMOS Transistors What do we need?

- Gate stack (Gate dielectrics and electrode)
- Channel: Surface flatness,

high-mobility material, Local strain

 Source/Drain: Dopant profiling for ultra-shallow junction, metal source/drain

IRAI Simultaneous measurement of potential and individual dopant atoms

Local Work Function Measurements on a Transistor Cross Section

IRAI

18/24

IRAI

Quantitative potential profiling by *I-V* measurements

M. Nishizawa et al, APL 2007

Metal S/D Formation using Epitaxial NiSi₂

Metal S/D Formation using Epitaxial NiSi₂

Straight edge is automatically formed.

Application to Nanowire Transistor

21/24

towards "Ballistic" Transistors *AIST*

Conclusions

For Nano CMOS Fabrication;

- Atomic scale processing technologies are requires particularly at the interface of heterogeneous materials.
 - Full exploitation of Self-limiting or self-organizing phenomena
- Nanoscale characterizations of local properties and structures are needed.

- e.g., Local strain in Si, Potential distributions

Colleagues in MIRAI project

- T. Tada and V.V. Porochii for UV Raman measurements
- L. Bolotov and M. Nishizawa for STM measurements
- K. Usuda for Nano-beam diffraction
- N. Hirashita, T. Numata, T. Tezuka, N. Sugiyama and S. Takagi and many other members of the MIRAI project for providing STI and strained SOI structures

Sample preparation

- N. Hattori of Renesas Technology for strained STI structures
- H. Fukutome of Fujitsu Laboratory Ltd. for the *p-n* junction samples.

This work was supported by MIRAI project, NEDO and by METI under the Innovation Research Project on Nanoelectronics Materials and Structures.