Tailoring Matter on the Molecular Level: organic solids as models to study physics in reduced dimensions
Martin Dressel
1. Physikalisches Institut der Universität Stuttgart, Germany

Outline

1. Organic Conductors
 basics and development

2. Competing Interactions
 charge order
 charge fluctuations, superconductivity

3. Electronic Correlations
 localization
 Mott transition, charge dynamics

4. Outlook

N. Drichko, M. Dumm,
D. Faltermeier, S. Kaiser,
Y. Sun, S. Yasin
Universität Stuttgart, Germany

C. Meziere, P. Batail
CNRS, Universite d'Angers, France

J. Schlueter
Argonne National Laboratory, U.S.A.

R. Lyubovskaya
RUS, Chernogolovka, Russia

J. Merino
Universidad Autonoma, Madrid, Spain

R. McKenzie
UQ, Brisbane, Australia

A. Greco
Rosario, Argentina
Organic Conductors basics

Organic materials:
19 Mio. compounds containing carbon

Aromatic rings:
delocalized π-orbitals
e.g. benzene

aspirin

TNT

naphthalene
...
Organic Conductors
basics

Organic solids

are in general insulators because the bonds are saturated, the electronic bands are filled

Requirements for electrical conductivity:

- overlap of orbitals: band formation
- add or extract electrons: partially filled bands
 - electrical field effect
 - charge transfer salts
Organic Conductors
charge transfer salts

TTF-TCNQ

The structure consists of TTF and TCNQ stacks.
TTF is a strong electron donor,
TCNQ is an electron acceptor.

Along the stacks the π-orbitals overlap
leading to one-dimensional conductivity.
Organic Conductors
charge transfer salts

$\text{(TMTTF)}_2\text{PF}_6$

The structure consists of TMTTF stacks as electron donors, separated by inorganic acceptors.

Along the stacks the π-orbitals overlap leading to one-dimensional conductivity.
Organic Conductors
crystal growth

Growth of single crystals
by electro-crystallization from solution.

typical size: 1 to 5 mm

(TMTSF)$_2$PF$_6$
Organic Conductors
development

Starting point:

1964 W.A. Little predicts excitonic superconductivity in organic polymer chains

1973 F. Wudl, A. Heeger
1dim organic conductor
TTF-TCNQ

1979 K. Bechgaard, D. Jerome
1dim organic superconductor
(TMTSF)$_2$ClO$_4$

1984 E.B. Yagubskii
2dim organic superconductor
(BEDT-TTF)$_2$X

Ishiguro, Yamaji, Saito, 1998
Organic Conductors

radical cation salts

\[(\text{BEDT-TTF})_2X\]

Bis(ethylene-dithio)tetrathiofulvalene

The structure consists of BEDT-TTF layers as electron **donors**, separated by sheets of inorganic **acceptors**.

anisotropy within the plane perpendicular to the plane

\[\frac{\sigma_c}{\sigma_a} \approx 0.5\]

\[\frac{\sigma_b}{\sigma_a} \approx 10000\]
Organic Conductors
radical cation salts

\((\text{BEDT-TTF})_2X\)

The layered arrangement of the organic molecules, separated by anions, leads to a **two-dimensional electronic system**.

- The **bandwidth** depends on the overlap integral between neighboring molecules \(W = 8t \approx 1\) eV for these compounds.

- The **band-filling** depends on the stoichiometry.

- The **on-site** \((U)\) and **inter-site** \((V)\) Coulomb interactions depend on the molecule
 \(U_{\text{eff}} = 0.5\) eV

strong influence of electron-electron correlations
Ordering Phenomena
low-dimensional systems

Competing interactions:

- lattice degree of freedom
- charge degree of freedom
- spin degree of freedom
- orbital degree of freedom
- electron-electron interaction
- electron-phonon interaction
- spin-phonon interaction
- spin-spin interaction

Localization, metal-insulator transition, antiferromagnetic ordering, …

Ordering patterns in low-dimensional systems

k-space phenomena:

- Fermi-surface instabilities: CDW, SDW

real space phenomena:

- spin-Peierls, spin order, charge order, Wigner crystal
Ordering Phenomena
low-dimensional systems

Charge order in two dimensions
1/4-filled systems

homogeneous charge distribution
horizontal stripes
vertical stripes
diagonal stripes checker board
Ordering Phenomena
low-dimensional systems

Charge order in two dimensions
1/4-filled systems

- homogeneous charge distribution
- horizontal stripes
- vertical stripes
- diagonal stripes
- checker board
Optical Reflection Measurements
experimental setup

Fourier transform infrared spectrometer
 Bruker IFS 113v
 Bruker IFS 66v

Infrared microscope
 Bruker Hyperion

Frequency range:
 15 cm\(^{-1}\) – 25 000 cm\(^{-1}\)
 (2 meV – 3 eV)

Temperature range:
 1 K ≤ T ≤ 300 K

Magnetic field: Hydrostatic pressure:
 B ≤ 12 Tesla p < 7 GPa

Absolute values of reflectivity by Au evaporation method.

size of the surfaces: (0.5 – 1 mm\(^2\))
with IR microscope: (150 \(\mu\)m\(^2\))
Small in-plane anisotropy:
reflectivity is higher
in the direction of larger overlap.

Deviations from a simple metallic behavior.

The spectral weight is defined as
\[I_\sigma = \int_0^\infty \sigma_1(\omega) d\omega = \frac{\omega_p^2}{8} \]
where the plasma is given by
\[\omega_p^2 = \frac{16te^2}{h V_m} \sin \left\{ \frac{\pi}{2} \rho \right\} \]

The width of the conductance band is
typically 0.8-1 eV
(overlap integrals \(t \) about 0.1 eV).
This is comparable to Coulomb interaction \(U \).

Molecular Vibrations
in BEDT-TTF salts

The **intra-molecular vibrations** are a measure of the localized charge.

\[\nu_3 (A_g) \]

\[\nu_2 = 1554.2 \text{ cm}^{-1} \]

The phonon frequency shifts down when electrons are taken off.

Raman shift in \(\alpha-(\text{BEDT-TTF})_2\text{NH}_4\text{Hg(SCN)}_4 \) three vibrational peaks indicates three different sites.
The **intra-molecular vibrations** are a measure of the localized charge.

IR active molecular vibrations are intense only for polarization $E \perp$ conducting layers

IR mode in β''-(BEDT-TTF)$_2$SF$_5$CH$_2$CF$_2$SO$_3$ splitting below 150 K indicates charge order $\Delta \rho = 0.2e$
Collective Modes
in charged ordered systems

The inter-molecular vibrations are lattice vibrations, which become IR active due to charge order: collective excitations.

Collective CO mode in β''-(BEDT-TTF)$_2$SF$_5$CH$_2$CF$_2$SO$_3$ appears below 150 K.

S. Kaiser et al., arXiv:0812.3732
Quasi-Two-Dimensional Organic Conductors

electronic correlations

• α-(BEDT-TTF)$_2X$
 2:1 stoichiometry: insulator, metal, superconductor
 1/4-filled system: hole carriers

• κ-(BEDT-TTF)$_2X$
 2:1 stoichiometry, dimerized: metal, superconductor
 1/2-filled upper band: hole carriers
Quasi-Two-Dimensional Organic Conductors
(BEDT-TTF)$_2$X salts

Proposed Phase Diagrams

¼ filled compounds

½ filled compounds

Tuning parameters:

- electronic correlations (on-site U, inter-site V)
- bandwidth W
Metal-Insulator Transition
bandwidth control by anion substitution

What are the dynamical properties close to the metal-insulator transition?
We investigated the temperature dependent optical conductivity of \(\kappa-(BEDT-TTF)_2Cu[N(CN)_2]Br_xCl_{1-x} \) with \(x = 0\%, 40\%, 73\%, 85\%, \) and \(90\% \).

Changing size of the anions changes the overlap integral \(t \): ‘chemical pressure’

\(\kappa-(BEDT-TTF)_2Cu[N(CN)_2]Cl \) is a semiconductor at room temperature which becomes a Mott insulator below 100 K. At low temperature it orders magnetically, under slight pressure it superconducts.

\(\kappa-(BEDT-TTF)_2Cu[N(CN)_2]Br \) is metallic for \(T \leq T^* \approx 50 \) K. Organic superconductor with maximum \(T_c = 12 \) K.

Optical Properties
of κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br$_x$Cl$_{1-x}$
Metal-Insulator Transition in κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br$_x$Cl$_{1-x}$

When the **temperature rises**, the gap shifts to lower frequencies, like a mean-field behavior.

When **Br content increases**, i.e. U/t decreases, spectral weight starts to fill the gap, finally a Drude-like component develops.

The optical conductivity contains different contributions which can be disentangled:

Intra-molecular vibrations:

\[\nu_4 \]

emv coupling

Electronic Excitations

- Intra-dimer excitations
- Inter-dimer excitations

Optical Properties
itinerant charge carriers

Inter-dimer excitations

localized charge carriers
due to the on-site (dimer) Coulomb repulsion;
excitations across a Mott-Hubbard gap
delocalized charge carriers

Hubbard model on frustrated square lattice

\[H = -t_2 \sum_{\langle ij \rangle \sigma} (c_{i\sigma}^\dagger c_{j\sigma} + c_{j\sigma}^\dagger c_{i\sigma}) - t_1 \sum_{\langle ij \rangle \sigma} (c_{i\sigma}^\dagger c_{j\sigma} + c_{j\sigma}^\dagger c_{i\sigma}) + U \sum_i n_{i\uparrow} n_{i\downarrow} - \mu \sum_i c_{i\sigma}^\dagger c_{i\sigma} \]

- \(t_2 \): nearest neighbor hopping amplitude
- \(t_1 = 0.8t_2 \): next-nearest neighbour hopping amplitude
- \(U \): on-dimer Coulomb repulsion

\(U \approx 0.3 \text{ eV} \)
\(t_2 \approx 0.03 \text{ eV} \)

Metal-Insulator Transition
bandwidth control U/t

Metallic state

- Drude-like feature due to the coherent quasiparticles (Fermi liquid)
- band of width W centered around $U/2$
- broad band at U of width $2W$.

Insulating state

- gap of $\Delta_{\text{Mott}} = U-W$
- broad band of width $2W$ centered around U

Dynamics of Correlated Charge Carriers

Temperature dependent optical conductivity

DMFT calculations for the Hubbard model

- Number of holes per dimer
 \[N_{\text{eff}}(\omega) = \frac{m_b}{e^2} \frac{2}{\pi} \int_0^\omega \sigma_1(\omega')d\omega' \]
- Band at U/2 suppressed in experimental data
- Gradual destruction of quasiparticles above T*

\[\kappa-(ET)_2\text{Cu[N(CN)]Br}_{0.73}\text{Cl}_{0.27} \]

\[\sigma_1(\Omega^{-1}\text{cm}^{-1}) \]

\[\nu(\text{cm}^{-1}) \]

Dynamics of Correlated Charge Carriers

effective charge carrier number

Effective carrier number per BEDT-TTF dimer

With increasing correlations U/t:
- spectral weight is transferred to higher frequencies
- effective charge-carrier number is suppressed

Dynamics of Correlated Charge Carriers
frequency dependent scattering rate and mass

Extended Drude analysis

\[
\frac{1}{\tau(\omega)} = \frac{ne^2}{m} \frac{\sigma_1(\omega)}{\left[\sigma_1(\omega)\right]^2 + \left[\sigma_2(\omega)\right]^2}
\]

\[
m^*(\omega) = \frac{ne^2}{m\omega} \frac{\sigma_2(\omega)}{\left[\sigma_1(\omega)\right]^2 + \left[\sigma_2(\omega)\right]^2}
\]

from DMFT calculations

The scattering rate indicates a Fermi-liquid behavior:

\[
\frac{1}{\tau} = A \left[(2\pi k_B T)^2 + (\hbar \omega)^2 \right]
\]

The prefactor \(A \) becomes larger as the metal-insulator transition is approached, because correlations increase. (Kadowaki-Woods-plot)

from experiments

When approaching the metal-insulator transition from the metallic side, the effective mass increases, because correlations increase. (Brinkman-Rice)

Drude Weight at the Metal-Insulator Transition
density of states

The Mott transition can be visualized as a reduction in the density of states at the Fermi energy.

At the transition $D(E_F)$ is zero.

Since the metal-insulator transition is first order, there is an abrupt jump with $(D_c/D_0) = 0.1 \ldots 0.3$.

For large $x > 70\%$ we find a dramatic increase of the spectral weight as the temperature is reduced below $T^* = 50 \text{ K}$.

This clearly separates the Mott insulating from the metallic state at $x_c \approx 70\%$.

Diagram:
- The figure shows the evolution of the spectral weight $D(E)$ and D/D_0 with Br concentration and temperature.
- A dramatic increase in spectral weight is observed for $x > 70\%$ at temperatures below $T^* = 50 \text{ K}$.
The two-dimensional organic conductor \(\kappa-(BEDT-TTF)_{2}\text{Cu}[\text{N(CN)}_{2}]\text{Br}_{x}\text{Cl}_{1-x} \) is a half-filled correlated electron system which serves as a model of a **bandwidth controlled Mott insulator**.

- For the metallic compounds a coherent carrier response appears below 90 K.
- When the Mott transition is approached by increasing \(U/t \), the Drude spectral weight decreases.
- The Drude response disappears on crossing the phase border to the Mott insulator.

Summary
two-dimensional organic conductors

- In the half-filled compounds κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br$_x$Cl$_{1-x}$ a bandwidth-controlled Mott transition was explored.
- The dependence of coherent carriers response for different band-fillings was studied; it increases on doping from 1/2 filling.
- For metallic compounds with the same U/t ratio, a coherent carriers response is present only at low temperatures for 1/2-filled compound, - it increases slightly on cooling for 1/4-filled compound - it stays constant for 1/5-filled compound.
