

MOMENT

Materials for Optical, Magnetic, and Energy Technologies

Semiconducting and half metallic Heusler compounds for multifunctional applications

Claudia Felser

Heusler Compounds as Multifunctional Materials

1905 1983

- Magnetic material:
- Halfmetallic ferromagnet:
- Magneto-optical:
- Magneto-mechanic:
- Superconductor:
- Semiconductors:
- Heavy fermion:
- Li-conductor:
- Magneto-electronic:
- Thermo-electric:
- Magneto-caloric:

Cu₂MnAl NiMnSb **PtMnSb** Ni₂MnGa Pd₂YSn CoTiSb Fe₂VAI LiMnSb Co₂FeSi TiNiSn CoMnSb:Nb

ISABELLENHÜTTE

2001

- Concept
- Semiconducting Half Heusler
 Thermoelectric materials
 Diluted Semiconductors
- Half metallic Heusler compounds
 High Curie temperatures
 Ferrimagnets
- High energy photoemission for Devices
- Summary

- Concept
- Semiconducting Half Heusler
 Diluted Semiconductors
 Thermoelectric materials
- Half metallic Heusler compounds
 High Curie temperatures
 Ferrimagnets
- High energy photoemission for Devices
- Summary

Rational Design

- First TMR device (Inomata et al.) 19% at RT
- TMR-device with MgO (Marukame et al. APL 90 (2007) 012508) 109% TMR at RT ⇒ 88 % spin polarisation at 4K
- Point contact 80% MR (Coey et al.)

Patent (Felser, Block, DE 101 08 760, H01 L43/08) Block, Felser, et al. J. Solid State Chem. **176**, 646 (2003)

Semiconducting Heuslers – Stuffed ZnS

Magic valence electron number $X_2YZ 24$ Valence electrons =^24 + sat. magnetization

• Concept

- Semiconducting Half Heusler
 Thermoelectric materials
 Diluted Semiconductors
- Halfmetallic Heusler compounds
 High Curie temperatures
 Ferrimagnets
- High energy photoemission for Devices
- Summary

Thermoelectrica

Half Heusler: 18 valence-electrons

Тур	Material	Price in \$/kg (metals)	1,8 $-\bullet - Bi_2(Te_{0.8}Se_{0.2})_3$ 1,6 $-\bullet - CoSb$
V-VI	Bi ₂ Te ₃	140	(7r Hf) Ti NiSn Sh
IV-VI	PbTe	99	$1,4 \mid$
Zn ₄ Sb ₃	Zn_4Sb_3	4	∇ $=$ $ SI_{0.8}Ge_{0.2}$
Silicides	p-MnSi1.73	24	$:= 1, 2 - (Hr_{0.5}2r_{0.5})$ NISN (OF2)
	$n-Mg_2Si_{0.4}Sn_{0.6}$	18	$\bigoplus_{i=1}^{4} 10^{\left[Mg_{2}Si_{0.8}Sn_{0.2}\right]}$
	Si _{0.80} Ge _{0.20}	660	
	Si _{0.94} Ge _{0.06}	270	
Skutterutides	Co Sb ₃	11	
Half-Heusler	TiNiSn	55	
n/p-Clathrate	Ba ₈ Ga ₁₆ Ge ₃₀	1000	
		without Ba	
Oxides	p-NaCo ₂ O ₄ ,	17	0,2 -
		without Na, O	
Zintl Phasen	p-Yb ₁₄ MnSb ₁₁	92	
Th ₃ P ₄	La _{3-X} Te ₄	160	0 200 400 000 000 100
			Temperature TK

Information H. Böttcher

Fraunhofer _{Institut} Physikalische Messtechnik R. Asahi et al. J. Phys.: Cond. Mat. 20 (2008) 64227
K. Miyamoto et al. Appl. Phys. Express 1 (2008) 081901
E. Toberer, Nature Mat. 7 (2008) 105
VK Zaitsev et al. PRB 74 (2006) 045207

Half Heusler for Thermoelectrics

Kandpal et al. J. Phys. D 39 (2006) 776

Balke et al. PRB 77, 045209 (2008)

Thermoelectrica

First Heusler Nanoparticles: Co₂FeGa

Basnit et al. J. Phys. D, (2009) accepted

For Spin Injection

Design of Diluted Semiconductors

- Concept
- Semiconducting Half Heusler
 Diluted Semiconductors
 Thermoelectric materials
- Half metallic Heusler compounds
 High Curie temperatures
 Ferrimagnets
- High energy photoemission for Devices
- Summary

Tunneljunction

TMR ratio = 67%@RT, 580%@2K

Large temperature dependence of TMR ratio should be solved.

Sakuraba et al. APL **89** (2006) 052508

Sakuraba et al. APL 88 (2006) 192508

Half metallic ferromagnetsfor Tunnel magnetoresistance TMRfor CPP GMR

What do we need?

High Curie Temperature Ordered $L2_1$ structure Good interfaces Adjusted E_F : middle of the gap no magnons

Designed electronic structure

High Curie Temperatures

Fecher, J. Appl. Phys. **99** (2006) 08J106 Kübler et al., Phys. Rev. **B 76** (2007) 024414

IrMn

CoFe(1)

MgO(2)

TMR: 423.40%, 7K, A470°C, Rs: 1.91e+02Ω, RA: 1.91e+04 Ω·μm²

Fecher, Felser J. Phys. D 40 1582 (2007)

Spin resolved density of states $\rho(E) [eV^{-1}]$

N. Tezuka et al., Jpn. J. Appl. Phys. 46, L454 (2007)

Heusler in Spintronic Devices: CPP-GMR

Ferrimagnets

Application: Spintorque

Compensated ferrimagnet?

no net magnetization two magnetic sublattices with compensating moments

Warren E. Pickett Phys. Rev. B 57 (1998) 10613.

Spin transfer switching

Halfmetallic Ferrimagnet

Kübler's Rule Slater Pauling Rule

Mn₂MnGa

Two magnetic sublattice •24 Valence electrons – 0 μ_B •Mn³⁺ at octahedral site – 4 μ_B •Mn compensates

 \Rightarrow Compensated ferrimagnet

Wurmehl, et al. J. Phys. Cond. Mat. 18 (2006) 6171 Balke et al. APL 90 (2007) 152504

Compensated Ferrimagnet: Heusler

Mn₂MnGa

Low Moment – High Curie Temperature: low current for spinswitch Tetragonal distorted Heusler: Mn³⁺ Jahn Teller Ion

Compensated ferrimagnet: 1µ_B Theoretical Spinpolarisation: 88% Curie temperature: 730 K

Balke et al. APL **90** (2007) 152504 Winterlik et al. Phys. Rev. B **77** (2008) 054406

Heusler and relates Structures

XMnMnZ XCrCrZ

- Concept
- Semiconducting Half Heusler
 Diluted Semiconductors
 Thermoelectric materials
- Halfmetallic Heusler compounds
 High Curie temperatures
 Ferrimagnets
- High energy photoemission for Devices
- Summary

High Energy Photoemission

High Energy Photoemission: buried films

Film quality studied by High Energy PES

- Half Heusler compounds (Stuffed ZnS) are candidates for thermoelectric applications and for diluted semiconductors
- Nanostructured Heuslers are need for low thermoconductivity
- Heusler compounds are half metals with high Curie temperatures
 Co₂YZ
- Compensated ferrimagnetic Heuslers Mn₂YZ with 24 Valenceelectrons
- Halfmetallic ferrimagnets for spintorque application Mn₂CoZ
- High energy photoemission is an excellent tool to study devices
- SPINHAXPES is needed

Deutsche

Forschungsgemeinschaft

DFG

JST-DFG Project:

- NIMS, Tohoku: K. Inomata
- Saporro: M. Yamamoto
- SPring8: K. Kobayashi

Dresden: S. Wurmehl

Augsburg: A. Reller

FG 559: G. Jakob, B. Hillebrands, J. Kübler, Y. Ando (Tohoku)

DFG-FG559, FE633, SP1166, BMBF: HEUSPIN, MULTIMAG

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

MAIN