FINNISH–JAPANESE WORKSHOP ON FUNCTIONAL MATERIALS May25 - 26, 2009 (Espoo and Helsinki, Finland)

Materials from wooden biomass

Pyrolytic conversion of structured alkaline lignins to porous carbonized materials

Masashi KIJIMA Institute of Materials Science Graduate School of Pure and Applied Sciences University of Tsukuba, Japan

CO₂ recovery system in nature

Purpose of our research

Synthesis of functional carbon-rich materials from wooden biomass

Cellulose & Lignin

Low content of C Various functional groups in the material

Possible to restructurize

Structured C-rich Materials High-C content: uniform & homogeneous composition

Application: thermoelectric-conversion, Photovoltaic & sollar cells, electrodes for batteries, fuel cell, EDLC, Stable porous Energy-source (H_2 etc) storage material etc.

Advantage of lignin to convert into carbon materials: Lignin has the phenolic components: high C fixation ability on anaerobic pyrolysis

There has been reported several results on carbonization of lignin and preparation of activated carbon

Activated carbon and the pore structure

< characteristics > Surface area : ~ 1000 m²/g

< preparation >
Activated carbon:Physical and
chemical activation

< applications >
Adsorbent & gas sotrage
molecular sieve
electrodes

macropore
50 nm < W</th>mesopore
2 nm < W < 50 nm</td>micropore
W < 2 nm</td>

pore volume

(diffusion of material)

Preparation methods of porous carbon

C: 51.83 %, H: 4.78 %, N: 0.11 % (Tokyo Kasei)

Reagent grade(available)

SEM

CL4 : deposition on the surface was a Na salt confirmed by XPS CLW : After washing CL4 with water, the deposition was cleaned off

sample	Yield (%)	S _{BET} (m²/g)	S				DH	
			S _{total} (m²/g)	V _{micro} (ml/g)	W _{micro} (nm)	V _{total} (ml/g)	V _{meso} (ml/g)	V _{meso} / V _{total} (%)
CL4	46	664	655	0.09	0.90	0.55	0.15	28
CLW		899	1031	0.17	0.65	0.69	0.19	27

Carbonization results and N₂ adsorption data

Control of structure and morphology of carbonized materials

Preparation of micellar lignins (ML) and their carbonization

Particle samples could not be obtained in this case. In order to obtain particle lignins, (3) rigid lignin gels are synthesized

Comparison of N₂ adsorption results of CL and CML

sample	Yield (%)	S _{BET} (m²/g)	S				DH	
			S _{total} (m²/g)	V _{micro} (ml/g)	W _{micro} (nm)	V _{total} (ml/g)	V _{meso} (ml/g)	V _{meso} / V _{total} (%)
CL4	46	664	655	0.09	0.90	0.55	0.15	28
CML3	17	1340	928	0.19	1.14	1.16	0.45	39

Toward synthesis of carbonized lignin particles

Preparation of alkaline lignin gel and the carbonization

Under basic aqueous conditions, alkaline lignin was reacted with formaldehyde to give a swelled polymer gel, which was carbonized after freeze drying.

SEM Images of lignin deriv. before and after carbonization

Carbonization and N₂ adsorption results

		0	S				DH	
sample	Yield (%)	З _{вет} (m²/g)	S _{total} (m²/g)	V _{micro} (ml/g)	W _{micro} (nm)	v _{total} (ml/g)	V _{meso} (ml/g)	V _{meso} / V _{total} (%)
CL4	45	738	920	0.26	0.70	0.50	0.06	11
CML3	17	1340	928	0.19	1.14	1.16	0.45	39
CLG	42	915	1029	0.17	0.70	0.78	0.23	30
CMLG	29	1423	1528	0.28	0.78	1.14	0.30	26

Electrical double layer capacitor (EDLC) characteristics of the carbonized lignins

 Et_4N^+ : 0.68nm

 BF_{4}^{-} : 0.44nm

Sample		S				DH	
	S _{BET} (m²/g)	S _{total} (m²/g)	V _{micro} (ml/g)	W _{micr} (nm)	V _{total} (ml/g)	V _{meso} (ml/g)	V _{meso} /V _{total} (%)
HTCL	213	-	-	-	0.40	0.18	45
HTCML	-	_	-	-	-	-	-
HTCLG	176	-	-	-	0.40	0.22	55
HTCMLG	187	-	-	-	0.32	0.20	63
CL4	664	655	0.09	0.90	0.55	0.15	28
CML3	1340	928	0.19	1.14	1.16	0.45	39
CLG	915	1029	0.17	0.70	0.78	0.23	30
CMLG1	1423	1528	0.28	0.78	1.14	0.30	26

Summary & Conclusions

Porous carbons are obtained from alkaline lignin (L) and their structured derivatives (ML, LG, MLG) by pyrolytic method.

Surface area and microporosity of CL can be increased by the structuration of the starting materials (ML, LG, MLG). Meso to macroporous spaces (pore volume) can be enlarged by the structuration.

Microporosity can be eliminated from the carbonized lignins by 1500°C heattreatment.

During the carbonization and heat-treatment processes, these materials almost retain their surface morphology.

These thermal conversion reactions are going to be applied to other lignin and cellulose derivatives in various forms (particle, film and fiber).

Aims and key words of this research: Conversions of wooden biomass to semiconductive and conductive carbon-rich materials; Addition of high carbon fixation ability; Regulation of nano-structures (porosity etc); Applications

Acknowledgement: Thanks to T. Hirukawa (Univ Tsukuba) & T. Hata (Kyoto Univ)