Finnish-Japanese Workshop on Functional Materials Espoo and Helsinki, Finland 25-25.5.2009



Utsunomiya Univesity Center for Optical Research and Education Toyohiko Yatagai

#### SURFACE RELIEF GRATING AND RETARDAGRAPHY: OPTICAL MANIPULATION OF AZOBENZENE POLYMER FILMS AND ITS APPLICATIONS

#### OPTICAL FUNCTIONAL DEVICES USING AZOBENZENE POLYMER FILM



- × Photoisomerization
- × Surface relief grating
- Retardagraphy: recording of optical polarization and reconstruction of complex amplitude
- Functional devices based on multilayer polymer thin film

#### **PHOTOINDUCED MASS TRANSPORT**



#### Nanofabrication, photo-mechanical devices



Photoinduced surface relief (PSR) formation

P. Rochon et al., Appl. Phys. Lett., 66, 136 (1995)

# **POLARIZATION DEPENDENT**







10 µm



### **MULTIPLE RECORDING GRATINGS**



Surface relief grating



Hexagonal structure



Orthogonal grating structure



Blazed grating structure

#### RELEIF DEPTH CONTROL BY ELECTRIC FIELD





# COMPUTER SIMULATION BASED ON VISCOUS FLUID MODEL Navier-Stokes equation



Continuity equation  $\frac{\partial \rho}{\partial t} = 0$ 

u: velocity vector

#### **COMPUTER SIMULATION OF MASS TRANSFER**



(532 nm)

Intensity:50 mW/cm<sup>2</sup>

Nd:YAG Laser  $abla^2 oldsymbol{E} = - k^2 oldsymbol{E}$ E :Electric Field k :Wave number 1 µm

# UU OPTICS

#### SUMMARY IN SURFACE RELIEF GRATING

- Origin of mass transfer: gradient of light intensity gradient of light pressure surface tension
- SRG generation is mainly due to electric dipole interaction with outer electric field.

**PHOTOINDUCED BIREFRINGENCE** 



# Optical storage media, polarization controllable devices

#### - Retardagraphy-

Optical recording technique for the retardance of a birefringent object

Liquid crystal spatial light modulator

Multivalued phase recording with a single laser beam

Large amount information recording





#### POLARIZATION HOLOGRAPHY: RECORDING





#### POLARIZATION HOLOGRAPHY: RECONSTRUCTION





#### POLARIZATION HOLOGRAPHY: RECONSTRUCTION







#### **JONES CALCULUS**





#### **PRINCIPLE OF RECONSTRUCTION**





# **PRINCIPLE OF RETARDAGRAPHY**





# **PRINCIPLE OF RETARDAGRAPHY**





#### **EXPERIMENTAL SETUP**



#### OPTICAL RECORDING BY RATARDAGRAPHY



**UU OPTICS** 

#### SUMMARY IN RETARDAGRAPY



•Explanation of polarization holographic characteristics in photoinduced birefringent films

Complex amplitude of signal beam from an object

Amplitude: Retardance of photoinduced birefringence Phase: Principal axis of photoinduced birefringence

Application to phase-type optical recording by retardagraphy

Features of retardagraphy

Recording absolute retardance values using a single laser beam
High robustness



#### MULTILAYER STRUCTURE BY SIPN COARTING











R. Katouf, T. Yatagai and S. Umegaki: Photonics & Nanostructure, **3**, 116(2005).



# **SUMMARY & PROPOSALS**

Functional photo material: Azobenzene polumers

Photoisomerization

Surface relief grating: hologaphy & functional gratings

Photo-induced bifringence: retardagrapy, optical memory & polarization devices ( polarization grating for LS devices)

Optical multi-layer structure: functional modulator

Collaboration: Joensuu University (Design of functional devices)