Planar Chiral Metamaterials for Polarization Control

Yuri Svirko

Department of Physics and Mathematics, University of Joensuu, Joensuu, Finland

Jari Turunen
Markku Kuittinen
Benfeng Bai

Makoto Gonokami
Kuniaki Konishi

CREST
SORST

Core Research of Evoluational Science & Technology
Solution-Oriented Research for Science and Technology
OUTLINE

1. Introduction: planar chiral metamaterials
2. Metal nanogratings
3. All-dielectric nanogratings
4. Magneto-optic effects
5. Concluding remarks
1. Introduction

What is Chirality?

- “Handedness”: right glove doesn’t fit the left hand.
- Mirror-image object is different from the original object.
An object is “chiral” if and only if it is not super imposable on its mirror image.

The lack of a plane of symmetry is called chirality or handedness.

Wikipedia:
Handedness is an attribute of human beings defined by their unequal distribution of fine motor skill between the left and right hands.
1. Introduction

Chirality

A pair of enantiomeric chiral molecules

![Mirror plane](image)

Mirror plane
1. *Introduction*

Chirality in nature

Knobbed Whelk
Almost always “right handed”

Lightning Whelk
Almost always “left handed”
HOMOCHIRALITY
Amino acids in proteins are always LEFT-HANDED
Sugars in DNA and RNA are always RIGHT-HANDED

The reason these molecules have such a uniform chirality is not known, but there is no shortage of theories on the subject.
Jon Cohen, Science, 1995, 267 (5202), 1265-6
1. Introduction

Circularly Polarized Light

Enantiomers

- Right circular polarization produces a right threaded screw.
- Left circular polarization produces a left threaded screw.
Superposition of left- and right circularly polarized waves of the same amplitude gives an achiral linear polarized light wave.
In a chiral medium, left- and right-circular polarized light interacts with medium differently. The difference is a measure of the chiral influence, which can be visualized by comparing the polarization state of the light before and after interaction.
1. Introduction Fundamental Symmetry and Chirality

Direct scenario: RCP wave interacts with D-molecule

Light-matter interaction is PT-invariant:

\[n_+ (D) = n_- (L) \quad \alpha_+ (D) = \alpha_- (L) \]
\[n_+ (L) = n_- (D) \quad , \quad \alpha_+ (L) = \alpha_- (D) \]

Natural optical activity

\[\phi \propto n_+ - n_- \Rightarrow \phi (L) = - \phi (D) \]

Circular dichroism

\[\eta \propto \alpha_+ - \alpha_- \Rightarrow \eta (L) = - \eta (D) \]
1. Introduction

Polarization rotation and circular dichroism are induced by molecular chirality.

A pair of enantiomeric chiral molecules

Natural optical activity
\[\phi \propto n_+ - n_- \Rightarrow \phi(L) = -\phi(D) \]
Circular dichroism
\[\eta \propto \alpha_+ - \alpha_- \Rightarrow \eta(L) = -\eta(D) \]

Constitutive equation
\[D = \varepsilon E + i\gamma k \times E \]

Molecular chirality \[\rightarrow\] Optical activity

Reciprocal effect
Can interaction of light with 2D chiral object lead to the optical activity of circular dichroism?

The answer is NO.
2D object in 3D space has a plane of symmetry
⇒ NO CHIRALITY

A film with a set of holes of arbitrary shape have the same transmission coefficients for left- and right-circular polarized waves

Nonsuperimposable
In a planar structure, in-plane mirror symmetry is broken by the substrate.
1. Introduction

Artificial optically active nanostructured material

- Array of gammadion nanoparticles with C_4 symmetry
- Resembles chiral uniaxial crystal
- Chirality comes from the pattern
- Optical activity enhanced by optical resonances (such as SP resonance)
- Works in the visible and near-IR spectral range
1. Introduction

Gammadion Gratings

Basic properties

(1) Reciprocity

(2) Handedness vs. rotation
1. Introduction

Gammadion Gratings

(3) $\theta = 0$ in presence of the symmetry plane

(4) $\theta = 0$ in reflected light

(5) The effect does not depend on the incident polarization direction (due to the C_4 symmetry)
1. Introduction

Effective parameters

\[
\varepsilon_{ij}^{\text{effective}} = \begin{pmatrix}
 n^2 - \Omega & \delta & 0 \\
 -\delta & n^2 + \Omega & 0 \\
 0 & 0 & \varepsilon
\end{pmatrix}
\]

Polarization rotation angle \(\Delta \)

\[
\Delta \approx \frac{\omega L}{2nc} \text{Im} \left\{ \delta \left[1 + \psi^2 \left(\frac{1}{2} - \frac{n^2}{\varepsilon} \right) \right] + \Lambda \Omega \sin 2\varphi + \alpha - \frac{\psi^2}{2\varepsilon} \Omega^2 \sin 4\varphi \right\}
\]

\[
\Lambda = \sqrt{\left(\delta \frac{\psi^2}{\varepsilon} \right)^2 + \left[1 + \psi^2 \left(\frac{1}{2} - \frac{n^2}{\varepsilon} \right) \right]^2}
\]

\[
\sin \alpha = \frac{\delta \psi^2}{\varepsilon \Lambda}
\]

\[
\cos \alpha = \frac{1}{\Lambda} \left[1 + \psi^2 \left(\frac{1}{2} - \frac{n^2}{\varepsilon} \right) \right]
\]
2. Metal grating

Experiment

\[\varepsilon_{ij} = \begin{pmatrix} n^2 - \Omega & \delta & 0 \\ -\delta & n^2 + \Omega & 0 \\ 0 & 0 & \varepsilon \end{pmatrix} \]

Polarization rotation at normal incidence

\[\Delta \approx \frac{\omega L}{2nc} \text{Im} \left(\delta + \Omega \sin 2\varphi \right) \]
2. Metal grating

Plasmon enhancement

Sample side view

Cr : 23nm
Au : 95nm
Cr : 3nm
Silica substrate

Large polarization rotation (~10^4 °/mm) enhances by the surface plasmon resonance
2. Metal grating

Transmission vs rotation spectra

Transmission $\propto \varepsilon$

Polarization rotation $\propto \delta$
2. Metal grating

Local electric filed

Y-polarization 630nm

Air-Metal interface

Metal-Substrate interface

Non-parallel electric field at both interface

\[\mathbf{n} \cdot \mathbf{E}_{air} \times \mathbf{E}_{sub} = \]

\[\text{Re} \left(E_{x,air} E_{y,sub} - E_{y,air} E_{x,sub} \right) \]

22
2. Metal grating

Chirality factor

\[
\frac{1}{A|E|^2} \int \text{Re} \left[E^\text{air}_x E^\text{sub}_y - E^\text{air}_y E^\text{sub}_x \right] \, dx \, dy
\]

Left, Right \neq 0

Cross = 0
2. Metal grating

Can we achieve enhanced transmission & enhanced polarization rotation simultaneously?

\[d = 800 \text{ nm}, \quad L = 120 \text{ nm} \]

Complimentary structure

SPP excitation at air-Au interface

SPP excitation at SiO\(_2\)-Au interface
2. Metal grating

Complimentary structure

Au gammadion-hole sample

The optical characterization is in progress
3. Dielectric grating

Left-twisted (LT)

Right-twisted (RT)
3. **Dielectric grating**
Transmission and rotation spectra

Spectra for LT and RT samples

- Giant polarization rotation (26.5° @ 634 nm) in direct transmission, 10 times larger than in metal gratings.
- Optical activity is enhanced by resonances.

Incident polarization direction
3. Dielectric grating

Guided-mode resonance

Phase matching at normal incidence \(\beta = \sqrt{i^2 + j^2 G}, \quad G = 2\pi / d \)

Guided modes manifest themselves as transmission dips on a smooth Fabry-Pérot background
3. Dielectric grating

Guided-mode resonance

Measured and calculated spectra
Different coupling of RCP and LCP waves

\[\lambda = 955 \text{ nm} \]

- Similar RCP and LCP coupling \(\rightarrow \) small CD
- Coupled field affected slightly by structural chirality

\[\lambda = 622.5 \text{ nm} \]

- Different RCP and LCP coupling \(\rightarrow \) large CD
- Coupled field affected more drastically by the structural chirality

3. Dielectric grating

Local field pattern
3. Magnetic grating

2D MO resonant nanograting

Bulk MO material

Kerr effect

Faraday effect

B

nanograting

?
3. Magnetic grating

Kerr effect: Numerical analysis

![Graphs showing Kerr effect analysis](image)

\[R = \frac{1}{2} (R_+ + R_-) \]

\[\theta = \frac{1}{2} (\phi_+ - \phi_-) \]

\[\tan \chi = \frac{a_+ - a_-}{a_+ + a_-} \]

The lifting of the RCP/LCP degeneracy produces strong Kerr rotation
An incident linearly polarized wave is split into a reflected LCP (RCP) and a transmitted RCP (LCP) wave, each with an efficiency of 50%.
3. Magnetic grating

Square holes array film

- $d = 420 \text{ nm}$, $D = 150 \text{ nm}$, $h = 160 \text{ nm}$
- BIG: bismuth iron garnet ($\text{Bi}_3\text{Fe}_5\text{O}_{12}$)
- GGG: gadolinium gallium garnet ($\text{Gd}_3\text{Ga}_5\text{O}_{12}$)
4. Concluding remarks

Novel metamaterials for polarization control?

- Artificial media/structure? ✓
- The property is not possessed by the composing media? ✓
- The property does not exist in nature? ✓
- \(d \ll \lambda \), i.e. the structure can be seen as homogeneous medium? x
4. Concluding remarks

- With planar nanogratings we can achieve a gyratory power several orders larger than that of natural or magneto-optically active media.

- The developed approach allows us to develop novel planar devices for polarization control

- THz optics: light-induced optical activity at terahertz frequencies (CLEO’09)

- THz optics: sub-wavelength devices for polarization control can be created by using conventional ink-jet printing technology

- Chiral gratings based on novel nanomaterials e.g. graphene