バイオ燃料は環境・エネルギー 問題に有効か?

松 田 智 静岡大学工学部

1973年・79年の「石油危機」以降

石油代替エネルギー開発の隆盛

その中の一つが「バイオマスエネルギー」 松田の博士論文「バイオマスのエネルギー利用に関する 実用可能性評価」(1983東京工業大学)

内容:世界・日本のバイオマス一次生産量分布推算 森林資源利用の条件

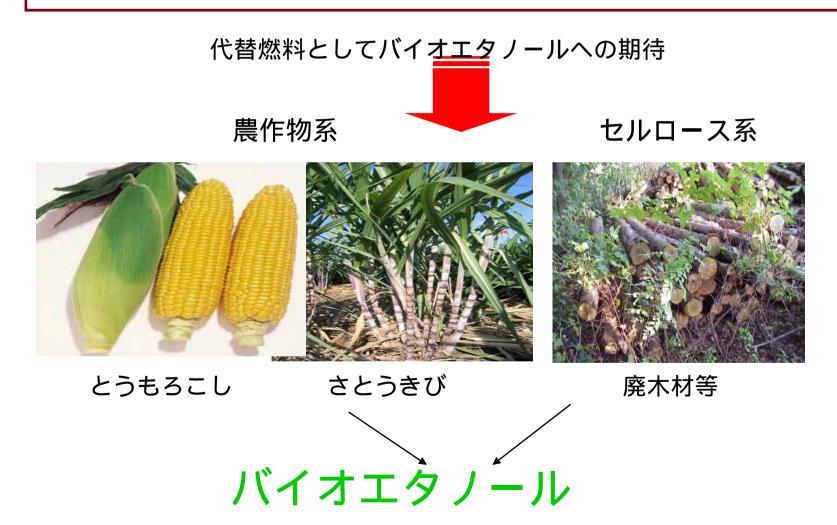
燃料用アルコール(バイオエタノール)の評価*

メタン発酵のエネルギー収支分析

国内バイオマス資源の利用可能量評価

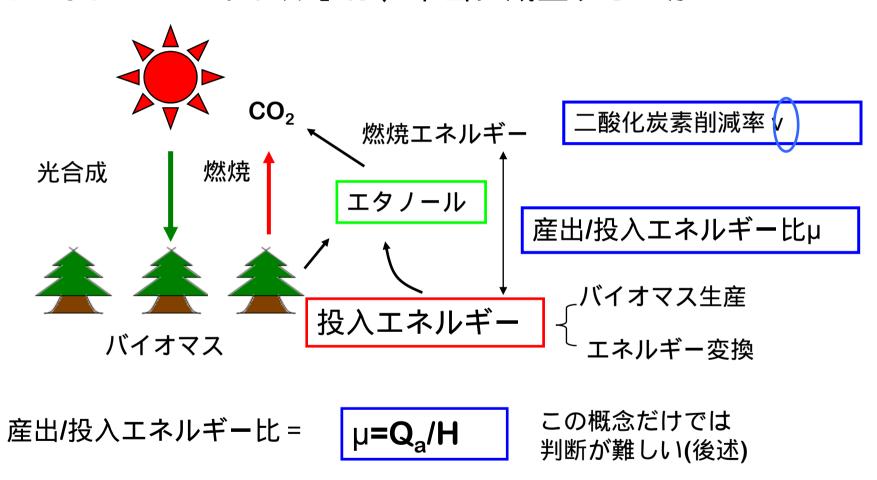
*成果は "The Feasibility of National Fuel-alcohol Programs in Southeast Asia"

by S. Matsuda and H. Kubota, *Biomass* 4(1984) 161-182


久保田宏 編:「選択のエネルギー」 日刊工業新聞社 1987年

久保田宏・松田 智:「幻想のバイオ燃料」 日刊工業新聞社

2,009年4月


《バイオエタノールの背景》

温暖化問題・石油価格の高騰などへの対策

問題意識

「カーボンニュートラル」は、本当に成立するのか?

Q_a:エタノール発熱量(5057kcal/**L**)

H:エタノール生産に必要な投入エネルギー消費量[kcal/L-ethanol]

エタノールのガソリン代替使用でのCO₂ 排出削減量原単位についての誤り

しばしば用いられる **1.54 kg-CO₂ / -エタノール** は製造時の投入エネルギーを無視した原単位

1.54 kg-CO2 / -エタノール = 2.554 * 0.602 エタノールのガソリン等価値 0.602 (= 5057 / 8400) エタノールの発熱量 5057 kcal/ (熱力学データ) ガソリンの平均発熱量 8400 kcal/ の比

ガソリン1 燃焼のCO₂発生量2.554 kg/ (原油の採掘、輸入に伴う輸送のエネルギーまで含んだLCI値)

ここにエタノールが1 あり、これをガソリンの代りに使えば、**1.54kg**の **CO**₂が排出されずに済む、という値

エネルギー産出/投入比 µ

製造したバイオ燃料の発熱量(kcal/)

生産に必要な全エネルギー投入量 (kcal/)

農作物原料からのエタノールの生産に必要な投入エネルギー:

- 1)原料農作物の生産工程 耕作用機械、肥料や農薬の製造、場合により灌漑用、また輸送用等の すべての燃料、電力等のエネルギー換算値+道路・倉庫等
- 2) 農作物からのエタノール製造工程 糖化(澱粉質原料)、蔗糖の発酵、蒸留(発酵液からのエタノール濃縮)、 脱水等の精製工程での所要エネルギーの積算値+廃水処理

両工程における人力、畜力(農業用)等のエネルギー換算値は、通常含まない。 エタノール製造工程において発酵原料とならない作物遺体(例えばさとうきびの搾りかす、バガス)を工場内で焼却して熱エネルギー源として利用する場合は、これを投入エネルギーから差し引く。

米国におけるとうもろこし生産での 耕地 1 ha 当たりの投入エネルギー

とうもろこし単収; 8,655 kg/ha (Pimentel ら⁶⁾のデータから)

ェネルキ゛ー * 10³kcal コスト \$	備考 *1

労働力	11.4 h	462	148.2		
機械	55 kg	1018	103.21	18.5 kcal/kg、	1.88 \$/kg
ジーゼル油	88	1033	34.76	11,740 kcal/ 、	0.395 \$/kg
ガ ソリン	40	405	20.80	10,125 kcal/	0.52 \$/kg
窒素肥料	153 kg	2448	94.86	16,000 kcal/kg、	0.62 \$/kg
リン酸肥料	65 kg	270	40.30	4,150 kcal/kg、	0.62 \$/kg
カリ肥料	77 kg	251	28.87	3,260 kcal/kg、	0.31 \$/kg
石灰	1120 kg	315	11.00	281 kcal/kg、	0.0098 \$/kg
種子	21 kg	520	4.81	24,760 kcal/kg、	3.56 \$/kg
灌漑	8.1 cm	320	123.00	1.000 cm のコスト	1,000\$
除草剤	6.2 kg	620	124.00	100,000 kcal/kg、	20 \$/kg
殺虫剤	2.8 kg	280	56.00	100.000 kcal/kg、	20 \$/kg
電力	13.2 kWh	34	0.92	2,580 kcal/kWh	、0.07 \$/kWh
輸送	204 kg	169	61.2	1,000 km輸送で0.8	33kcal/kg、0.3\$/kg
合計		8115	916.9		

注*1: 備考のエネルギー原単位、単価等は、原報の表の注として与えられた値、および、 表中のデータから計算される著者らによる推定値を示した。

CO。発生削減率を計算してみる

ガソリン代替エタノール使用量当たりの CO2 削減量[kg/ -エタノール]

分子:投入エネルギーによる寄与を考慮した実際の CO₂ 削減量

分母:投入エネルギーによる寄与を考慮しない CO₂削減量(無条件カーボンニュートラル)

$$V = (A - B) / A = 1 - B / A = 1 - (Qt/Qa)(Es/Ef)$$
 (3)

ここで、

A ; エタノールのガソリン代替使用での見かけの CO₂削減量 / -エタノール

B ; 投入エネルギー使用での CO₂排出量、kg/ -エタノール

$$A = Qa Ef$$
 $B = Qt Es$ (4)

ただし、

Qa; エタノールの発熱量、kcal/ -エタノール

Qt ; 投入エネルギー量、 kcal/ -エタノール

Ef ; 単位エネルギー当たりのガソリンの燃焼による CO₂排出量、kg/kcal

Es ; 単位投入エネルギー量当たりの CO₂排出量、 kg/kcal

Es; エタノール生産工程で投入される各種エネルギー源別の CO2 排出量の和

$$\mathsf{Es} = \sum \mathsf{xi} \; \mathsf{Esi} \tag{5}$$

Esi ; 投入エネルギー源 i の単位エネルギー量当たりの CO₂排出量、 kcal/kcal

xi; 各種投入エネルギー源i別のエネルギー分配比率

 ε ; 投入エネルギー源の単位消費量当たりの CO_2 排出量を表す係数(kg/kcal) $\varepsilon = Es / Ef = \sum \varepsilon i * xi$ (6)

- ϵ i ; 投入エネルギーとして使用されるエネルギー源の種類別の CO_2 発生特性指数 各種投入エネルギー源種類別の ϵ i = Esi/Ef (表 1)
- (1) 式で定義される産出/投入エネルギー比 μ ; $\mu = \mathbf{Qa} / \mathbf{Qt}$ (7)
- (2)式に、(3)~(8)式を代入して、vは μ 及び ϵ の関数として次式で求められる。 $v=1-\epsilon(1/\mu)$ (8)

表 1 エネルギー源種類別の CO2 発生特性を表す指標εi の値

(国内での LCI データ、原油等の資源の採掘、輸入に伴う輸送まで朔及した場合の値(*1) からの計算値)

	ガソリン	軽油	A重油	LNG	商用電力*2
エネルギー Qi *1 kcal/	9209	9706	10106	13951	2261
CO ₂ 排出量 Ei *1 kg/	2.554	2.723	2.893	2.883	0.447
(単位エネルギー当たりのCO ₂ 排出	¦量)				
Esi = Ei / Qi 10 ⁻³ kg/kca	al 0.277(=E	f) 0.281	0.207	0.207	0.198
εi (= Esi / Ef)	1.0	1.01	1.03	0.75	0.71

; *1 総合エネルギー統計(平成3年版;エネルギー庁)*2 は除く。 プラスチック処理促進協会;樹脂加工におけるインベントリデータ調査報告書

(2000年1月)から

*2 電源構成比による加重平均、/kWh での値

比較 : 石炭の ϵ i = 1.61 CO_2 排出削減を狙うなら石炭代替が効果大

国内1次エネルギー源別の構成比と電源構成比

(日本エネルギー経済研究所;エネルギー経済統計要覧5)から)

a. 国内1次エネルギー源の種類別構成比;

エネルギー源種類 石炭 石油 天然ガス 原子力 水力 その他 合計 種類別構成比 xi % 21.1 47.5 13.3 15.1 1.27 1.19 100

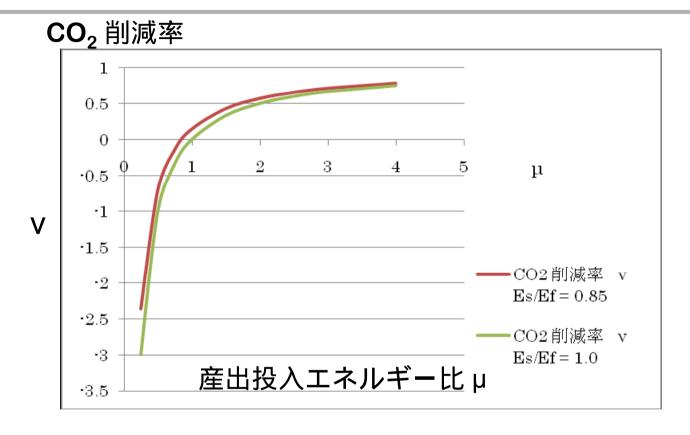
b. 国内電力のエネルギー源種類別構成比;

エネルギー源種類 石炭 石油 天然ガス 原子力 水力 その他*1合計 種類別構成比 xi% 27.9 11.6 19.5 35.1 3.0 2.9 100

注*1 その他としては、地熱、風力、可燃再生・廃棄物等

国内の商用電力の単位投入エネルギー当たりの CO₂ 排出量Esの値を求めるための計算表

	хi	Esi	Esi xi
	(%)*1	(10 ⁻⁴ kg-C/kcal)	(10 ⁻⁴ kg-C/kcal)
石炭	27.9	1.107	0.309
石油	11.6	0.851(:石油系の平均)	0.098
天然ガス	٦ 19.5	0.716	0.140
		火力発電小計:	0.547
原子力	35.1	0.04 Es	0.014 Es
水力	3.0	0.01 Es	0.0003 Es
その他	2.9	0.05 Es	0.002 Es
		原子力等の合計:	0.0163 Es


火力発電での発電効率 40.8% に送電効率86% を乗じた総合効率を35.1% として、1次エネルギー当たりの火力発電の CO_2 排出量を求め、これと1次エネルギーと2次エネルギーの区別のない原子力等のエネルギーを加えて、 CO_2 排出量のバランスをとると、 (0.547/0.351) + 0.0163 Es = Esから、投入1次エネルギーとしての電力のEs = 1.59 * 10-4 kg-C/kcalと得られる。

国内の1次エネルギーの CO_2 排出の特性値 ϵ の計算のための表

	хi	εί	εί χί
	(%)	(10 ⁻⁴ kg-C/kcal)	(10 ⁻⁴ kg-C/kcal)
石炭	21.1	1.315	0.278
石油	47.5	1.010 (石油系燃料の平	均) 0.480
天然ガス	13.3	0.716	0.095
原子力	15.1	1.59 * 0.04	0.0096
水力	1.27	1.59 * 0.01	0.0002
その他	1.19	1.59 * 0.05	0.0009
			合計 0.87

cf.バイオディーゼル油の軽油代替:同様にして $\epsilon = 0.85$

産出投入エネルギー比 µとCO₂削減率vの関係

産出投入エネルギー比 μ と \mathbf{CO}_2 削減率 \mathbf{v} の関係 (縦軸 \mathbf{v} 、横軸 μ : 両者の関係は \mathbf{e} iの値の影響を受けにくい 代替対象が何であっても μ と \mathbf{v} の関係には差がない)

バイオ燃料の化石燃料代替によるCO₂削減原単位

バ	イオエタノール	<i>、</i> バイオディーゼル油
発熱量 (低位)		
Q kcal/	5057	9000
代替対象		
化石燃料	ガソリン	車圣油
CO ₂ 削減量		
原単位kg-C/	0.426	0.770
(kg-CO ₂ 削減/) (1.56)	(2.82)

バイオ燃料製造原料の農業における単収、燃料収率、 両者の積として与えられる総合収率 (=単位農地面積当たりの燃料収率)の値

(Pimentel らのデータから)

原料	農業単収(t/ha)	燃料収率 (/t)	総合(/ha)
トウモロコシ	8.665	0.272	3.22
大豆	2.688	0.180	0.480
ヒマワリ	1.500	0.255	0.389

*バイオディーゼル油の総合収率は小さい

バイオエタノール・ガソリン代替による CO₂発生量削減率の試算

生産地別の産出/投入エネルギー比(μ)とCO2発生削減率(v)の試算

No	原料	生産地				産出/投 <i>入</i> エネルギー比	CO ₂発生 削減率
			農業	製造	合計	μ	V
1*1	さとうきび	ブラジル	1161	250	1141	3.34	0.70
2 * ²	さとうきび	ブラジル	548	134	681	7.41	0.87
3 *3	とうもろこ	し米国	3700	4971	8671	0.58	-0.71
4*4	とうもろこ	し米国	1684	3427	5111	0.99	-0.01

注 *1 ; 文献 1) から 1980、バガス燃料利用

*2; ブラジルサンパウロ州政府の報告から; 2003、バガス燃料利用

*3; 文献 6) から, 2001 Pimentel

*4; 文献 6) から, 2002 USDA

米国におけるトウモロコシからのエタノール製造の投入エネルギー

エタノール 1000 当たり (Pimentelらのデータから)

		エネルキ゛ー	コスト\$	
		10³kcal	\$	
原料関係				
コーン	2690 kg	2522	284.25	トウモロコシ生産のエネルギー937.6 kcal/kg
コーン輸送	2690 kg	322	1.40	144 km 往復 120 kcal/kg;0.008 \$/kg
エタノール製造	告			
水	40000	90	21.16	15 /kg、2250 kcal/t、0.53 \$/t
ステンレス・スチール	3 kg	12	10.60	4000 kcal/kg、 5.53 \$/kg
スチール	4 kg	12	10.60	3000 kcal/kg、 2.65 \$/kg
セメント	8 kg	8	10.60	1000 kcal/kg、 1.33 \$/kg
スチーム 2 ,	546,000kca	2546	21.16	2550 kcal/ -エタノール、
電力	392kWh	1011	27.44	2580 kcal/kWh、0.07 \$/kWh
精留(99.5%E	EtOH) 9 kcal/	9	40.00	0.009 kcal/ -เฦ/-ル、
廃水処理	20 kg-B0	OD 69	6.0	1.3 kWh/kg-BOD、0.3\$/kg-BOD
合 計	-	6597	453.21	· -

栽培作物を原料とするエタノール製造の問題点

- 1)食料供給との競合起きやすい:直接・間接両面あり (日本の場合、まず食料自給率を上げる努力を!)
- 2)栽培のための投入エネルギーが大きくなりやすい (日本の作物生産では大半がµ<0)</p>
- 3)需要量に比べて供給可能量が小さい
- 4)作物の経済価値を下げる:食料>マテリアル>燃料 (エネルギーは一番安くなければならないから)
 - *海藻バイオマス利用も、基本的には同じ

セルロース系バイオマスなら使い物になるのか?

国内バイオマス資源のエネルギー利用可能量推算値

バイオマス源	発生量 [10 ⁶ t-dry]	利用可能量 [10 ⁶ t-dry]
林地残材	1.13	1.13
間伐材	2.04	1.19
林産加工廃棄物	3.23	0.18
稲わら	7.87	0.24
もみ殻	2.04	0.29
麦わら	0.73	0.22

林産加工廃棄物の例

林産加工工場でのバイオマスの発生量と用途

千[m³]

工場の種類	発生量	利用量	木材 チップ	エネルギー 利用	堆肥、土壌 改良材		木質 ボード製 造	その他	廃棄量
計	10782	10197	4408	2330	584	2256	258	361	585
製材工場	8179	7700	4014	834	539	1966	62	284	480
単板工場	1306	1304	151	977	28	1	109	38	2
普通合板工場	309	296	36	214	0	4	34	8	13
特殊合板工場	61	53	6	40	0	4	3	1	7
集成材工場	404	390	49	201	4	118	14	4	14
プレカット工場	524	454	153	68	12	163	36	22	70

(農林水産省統計 2005)

利用できる林産加工廃棄物は0.585×106m3のみ

エタノール変換

木質系: 2.50×10⁶[t]×200[L/t] =50万[kL]

稲わら、麦わら: 0.46×10⁶[t]×0.079[kL/t] =3.63万[kL]

もみ殻: 0.29×10⁶[t]×0.18[kL/t] =5.22万[kL]

全量エタノール化すると約58.9万kL生産可能

農林水産省のバイオエタノール生産目標は600万kL

新エネルギー・産業技術総合開発機構資

木質バイオマスからのエタノール収率

200 L-ethanol/t-木材というのは、希望的数値

スギ 530g-セルロース/kg-木 274g-エタノール/kg ブナ 560g-セルロース/kg-木 290g-エタノール/kg

要するに、上記の収率は木材中のセルロースが全量糖化されエタノールになるときに得られる収率。 木質中のセルロースはリグニンが<u>分子レベルで</u>被覆されているため、微粉砕処理などでは十分なリグニンの除去は困難。

E10 で削減できる **CO**₂ は ガソリン使用の場合のわずか3.2%!!!

E10 の使用による CO₂ 排出削減量

エタノールの使用量 583 万 k /年、v = 0.5 を仮定

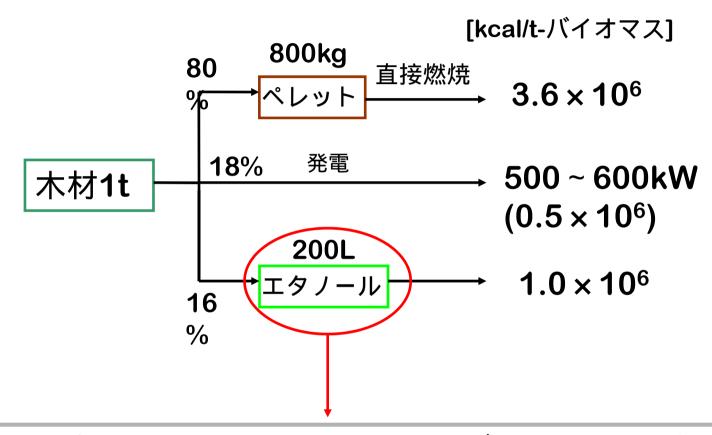
エタノールのガソリン代替によるCO₂ 排出原単位 1.56 t/k 583 * 0.5 * 1.56 = 455 万t / 年

エタノールを混合しない場合のガソリンの使用による CO2 排出量

E10 でのガソリン使用量

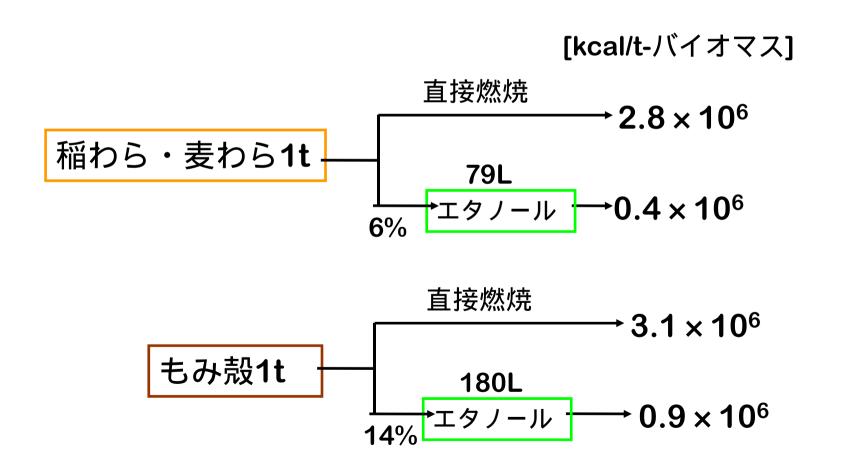
エタノールのガソリン等価値 0.602 から

583 * (100 – 10)/10 + 583 * 0.602 = 5598 万 k /年


ガソリンの CO。排出原単位 2.55 t/k より

5598 * 2.55 = 14275 万 t /年

削減率 = 455 / 14275 = 0.0319 = 3.2 %


この E10 の使用計画達成のためには、セルロース系原料からのエタノールの生産の技術の実用化以前の問題として、国内セルロース系バイオマスの純生産総量の 40 % 程度の原料量をどうして確保するかが、より重要な課題として存在する。しかも、その結果が、v=0.5 を仮定しても現状のガソリン使用量によるCO。排出量の 3 % 程度の削減のみ。

セルロース系バイオマスの有効利用策は直燃

実際は35L(0.2×10⁶ kcal/t-バイオマス)程度。 収率はわずか3%。

エタノール変換で得られるエネルギーは 直接燃焼の1/3~1/7程度

自分で作るのはもちろん、 ブラジルから輸入するのもばかげている

```
日本のバイオ燃料導入目標:
```

2010年までに原油換算50万k (= 78万k -エタノール) 120万t の CO₂ の排出削減(排出削減原単位 = 1.54)とされている

バイオエタノールを60円/でブラジルから輸入したとすると、 温室効果ガスの排出削減の費用対効果は

60円/ ×78万k ÷120万t - CO₂ = 39000円/t - CO₂ · · ·

EUの排出権取引の最近のデータ: 22.65ユーロ/t - CO₂ 163円/ユーロで換算すると 3692円/t - CO₂ ・・・

は の10倍以上

排出権取引の一般的な相場 $1500 \sim 2000$ 円/ $t - CO_2$ (2 兆円/10億トン) と比較して、バイオエタノールは非常に高い買い物である (正確には、ブラジルでの CO_2 の排出削減率v = 0.8で割るべきで、 はもっと高くつく)

参考: EUでのバイオエタノール製造原価 = 0.65ユーロ/ 106円/

CO。削減効果を費用対効果で見る

費用対効果 = (使用エタノールの生産コスト) $I(CO_2$ 削減量)

表3 CO ₂ 削減の費用対効果						
生産地	生產地原料 費用対効果					
		1-□/ t-CO ₂	円/t-CO ₂ * 1			
ブラジル	さとうきび	72~ 100	11,520 ~ 16,000			
米国	とうもろこし	220 ~480	35,200 ~ 76,800			
EU	小麦	340 ~ 730	54,400 ~116,800			
日本 7	゛ラジルからの輸入アル゙	コール	56,818 * ²			

Cf; EUにおける 排出量取引値(2007 年 11 月)は、22.65 ユーロ / t -CO₂ (3,692 円/t-CO₂)

注 * 1;株)野村総合研究所; バイオ燃料に関する報告、2007年12月から11-0=160円として計算。ただし、この試算では、CO2削減率 v = 1として算出されている

*2:日本におけるブラジルからのエタノールの輸入価格を70円/、さらにv=0.8として計算した場合の参考値

熱帯林のさとうきび畑の転換によるバイオエタノールの生産、ガソリン代替利用は、地球温暖化対策にはならない

輸入エタノールの利用とブラジルでの熱帯林

理由:純生産量の70%に相当する現存量の増加分の約35年分のバイオマスが蓄積されているとすると、

単位森林面積当たりの蓄積量(CO₂ 換算) = 685 t/ha 森林の農地転換に伴い、この蓄積量の 80 % が失われるとすると 損失量 = 548 t/ha

ブラジルにおける転換耕地を利用したエタノール生産での

CO₂ 発生削減量 = 7.3 t/ha/年

熱帯林の耕地転換に伴って一度に失われた CO_2 換算のバイオマスの蓄積量をカバーするのに約75 (= 548/7.3)年かかる

仮に、1/2 を用材や、固体燃料として利用できたとしても、一時損失の回復に 40 年近い年月が必要

バイオ燃料と地力回復年数

バイオ燃料生産のための土地変換による CO₂ の一時的な排出 を回復するために必要な年数 (Fargioneらの研究結果から)

原用土地	バイオ燃料	生産地	放出 CO ₂の 回復必要年数
熱帯林	パーム油 1	(ンドネシア,マレー:	シア 86
泥炭地林	パーム油 1	(ンドネシア,マレー:	シア 423
熱帯林	大豆油	ブラジル	319
セラード林均	也エタノール(S) ブラジル	17
セラード草均	也 大豆油	ブラジル	37
中央草地	エタノール(C	*)	93
耕作放棄地	エタノール(C	*)	49
耕作放棄地	エタノール(草	*	1

S:さとうきび、C:とうもろこし

まとめ

- 1)バイオ燃料推進の根拠とされている「カーボンニュートラル」は、概念の誤適用である
- 2)その定量的な評価の指標として CO_2 発生削減率を提案し、その値を既存データから試算した
- 3) ブラジルでのエタノール生産では > 0 となるが、 国内の農作物からのエタノール生産では < 0
- 4)栽培作物原料は論外、セルロース系資源を使ってもエネルギー供給への寄与は小さい(最大0.25%程度)
- 5)熱帯林のさとうきび畑の転換によるバイオ エタノールの生産、ガソリン代替利用は、 地球温暖化対策にはならない

液体バイオ燃料を正当化する根拠は皆無!

次の課題

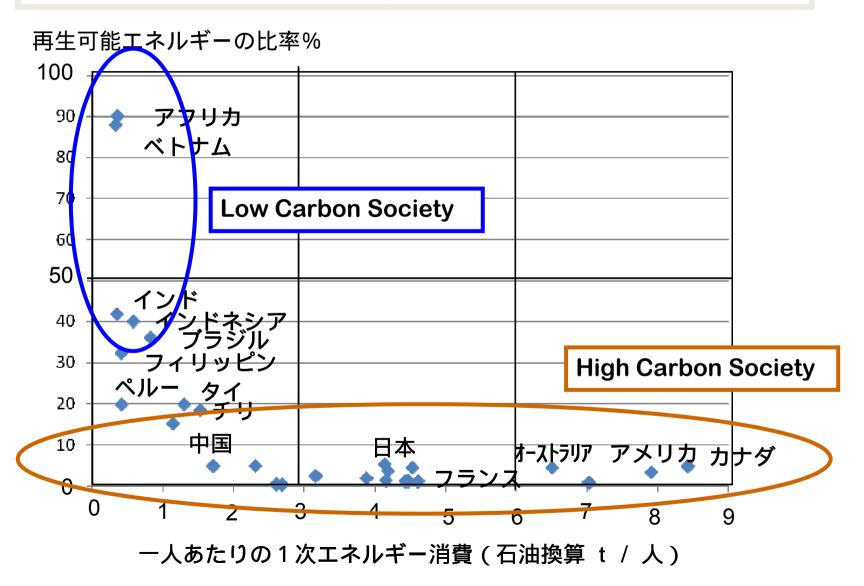
- 1)量的な問題:国内バイオマスの資源量、 現実的なエネルギー利用可能量の見積もり エネルギー供給への寄与をさらに正確に
- 2)経済上の問題:製造コストだけでなく、 影響範囲大
- 3)対案:自動車を何で走らせたらいいのか? あるべき交通体系とは? 自動車依存社会からの脱却シナリオ
- 4)対案:バイオマスの有効利用の道筋は? エタノール化よりは、直接燃焼がまだマシ しかしエネルギー供給全体への寄与は小さい
- 5)脱石油依存社会へのシナリオ 液体燃料信仰からの脱却(<u>CO2排出削減ではなく</u>)

国内の自動車用エネルギー使用システムと CO2 排出量試算

	システム	エネルギー効率	CO ₂ 排出原単位*1	I CO ₂ 排出量*2
			10 ⁻³ kg/kcal	10 ⁻³ kg-CO ₂ /kcal
Α	ガソリン自動車	0.16	0.277	1.73
В	ガソリン代替・コ	Lタノール 0.16	0.277 / 0.602	1.44 (0.83)
C	電気自動車(商	所電力) 0.32	0.198	0.619 (0.36)
D	電気自動車(パ	イオマス発電)0.32 *	0.35 0.198	0.354 (0.20)
E	ガソリン・ハイフ	グ リッド 0.16 / 0.	.7 0.277	1.21 (0.70)
F	プラグイン・ハイ	イプリッド(1)		0.915 (0.53)
G	プラグイン・ハイ	イプリッド(2)		0.751 (0.43)
Н	ディーゼル自動)車 0.16 /	0.7 0.280	1.23 (0.71)

*1; 科学技術庁(平成3年)LCIデータ

*2: 括弧内数値は、対システム A の値


政治的に進められている国策「バイオマス・ ニッポン総合戦略」と化学技術者の責任

- 1)京都議定書によるCO2 排出削減を目標にしたバイオエタノール燃料の利用 使用されたエタノール量だけ原油が節減できるとの常識で考えられない カーボンニュートラルの誤適用
- 2)2050 年削減率目標値 50 % に対し・・・ (本研究の結果)E10計画で、最大0.32 % or マイナス 注 このような事前評価が一切行われずに、実証試験(科学技術の進歩に全く 貢献しない)名目で多額の税金が浪費されている。

国のエネルギー政策の立案に関与している化学技術者の責任を強く問いたい。

注; 運輸部門のCO₂排出量、国内の 20 %、その 1/2 ガソリンとして、E10 計画での CO₂排出削減率 3.2 % から、国内の現状の削減寄与率を 最大0.3 % と見積もった。

低炭素社会?

