古寺 哲幸(コデラ ノリユキ)

古寺 哲幸
学位
理学博士
所属・職位
金沢大学 理工研究域 バイオAFM先端研究センター
准教授
URL
http://www.s.kanazawa-u.ac.jp/phys/biophys/index.htm
http://www.se.kanazawa-u.ac.jp/bioafm_center/index.htm
研究分野
生物物理学、一分子計測、原子間力顕微鏡

主要論文

  1. Haruyama T, Uchihashi T, Yamada Y, Kodera N, Ando T, Konno H.
    Negatively Charged Lipids Are Essential for Functional and Structural Switch of Human 2-Cys Peroxiredoxin II.
    J Mol Biol. 2018 Jan 6. pii: S0022-2836(18)30002-0.
  2. Shibata M, Nishimasu H, Kodera N, Hirano S, Ando T, Uchihashi T, Nureki O.
    Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.
    Nat Commun. 2017 Nov 10;8(1):1430.
  3. Terahara N, Kodera N, Uchihashi T, Ando T, Namba K, Minamino T.
    Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor.
    Sci Adv. 2017 Nov 1;3(11):eaao4119.
  4. Keya JJ, Inoue D, Suzuki Y, Kozai T, Ishikuro D, Kodera N, Uchihashi T, Kabir AMR, Endo M, Sada K, Kakugo A.
    High-Resolution Imaging of a Single Gliding Protofilament of Tubulins by HS-AFM.
    Sci Rep. 2017 Jul 21;7(1):6166.
  5. Mohamed MS, Kobayashi A, Taoka A, Watanabe-Nakayama T, Kikuchi Y, Hazawa M, Minamoto T, Fukumori Y, Kodera N, Uchihashi T, Ando T, Wong RW.
    High-Speed Atomic Force Microscopy Reveals Loss of Nuclear Pore Resilience as a Dying Code in Colorectal Cancer Cells.
    ACS Nano. 2017 Jun 27;11(6):5567-5578.
  6. Ngo KX, Umeki N, Kijima ST, Kodera N, Ueno H, Furutani-Umezu N, Nakajima J, Noguchi TQ, Nagasaki A, Tokuraku K, Uyeda TQ.
    Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin.
    Sci Rep. 2016 Oct 20;6:35449.
  7. Watanabe-Nakayama T, Itami M, Kodera N, Ando T, Konno H.
    High-speed atomic force microscopy reveals strongly polarized movement of clostridial collagenase along collagen fibrils.
    Sci Rep. 2016 Jul 4;6:28975.
  8. Davies T, Kodera N, Kaminski Schierle GS, Rees E, Erdelyi M, Kaminski CF, Ando T, Mishima M. CYK4 promotes antiparallel microtubule bundling by optimizing MKLP1 neck conformation. PLoS Biol. 2015 Apr 13;13(4):e1002121. doi: 10.1371/journal.pbio.1002121. eCollection 2015
  9. Ngo KX, Kodera N, Katayama E, Ando T, Uyeda TQ. Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy. Elife. 2015 Feb 2;4. doi: 10.7554/eLife.04806
  10. Kodera N, Uchida K, Ando T, Aizawa S. Two-ball structure of the flagellar hook-length control protein FliK as revealed by high-speed atomic force microscopy. J Mol Biol. 2015 Jan 30;427(2):406-14. doi: 10.1016/j.jmb.2014.11.007. Epub 2014 Nov 15.
  11. Kodera N, Ando T. The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophys Rev. 2014;6(3-4):237-260. Epub 2014 Jun 18
  12. Preiner J, Kodera N, Tang J, Ebner A, Brameshuber M, Blaas D, Gelbmann N, Gruber HJ, Ando T, Hinterdorfer P. IgGs are made for walking on bacterial and viral surfaces. Nat Commun. 2014 Jul 10;5:4394. doi: 10.1038/ncomms5394
  13. Ishino S, Yamagami T, Kitamura M, Kodera N, Mori T, Sugiyama S, Ando T, Goda N, Tenno T, Hiroaki H, Ishino Y. Multiple interactions of the intrinsically disordered region between the helicase and nuclease domains of the archaeal Hef protein. J Biol Chem. 2014 Aug 1;289(31):21627-39. doi: 10.1074/jbc.M114.554998. Epub 2014 Jun 19
  14. #Hashimoto, M., #Kodera, N., #Tsunaka, Y., Oda, M., Tanimoto, M., Ando, T., Morikawa, K., & Tate, S. Phosphorylation-Coupled Intramolecular Dynamics of Unstructured Regions in Chromatin Remodeler FACT. Biophys. J. 104, 2222-2234 (2013). #Contributed equally
  15. Nojima, T., Konno, H., Kodera, N., Seio, K., Taguchi, H., & Yoshida, M. Nano-scale alignment of proteins on a flexible DNA backbone. PLoS One 7, e52534 (5 pp) (2012).
  16. Ando, T., & Kodera, N. Visualization of mobility by atomic force microscopy. Methods Mol. Biol. 896, 57-69 (2012).
  17. #Uchihashi, T., #Kodera, N., & Ando, T. Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nature Protocols 7, 1193-1206 (2012). #Contributed equally
  18. Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72-76 (2010). (2012年 褒章内田賞 受賞論文、2012年 平成23年度ナノプローブテクノロジー奨励賞 受賞論文)
  19. Yamamoto, D., Uchihashi, T., Kodera, N., Yamashita, H., Nishikori, S., Ogura, T., Shibata, M. & Ando, T. High-speed atomic force microscopy techniques for observing dynamic biomolecular processes. Methods in Enzymol. 475, 541-564 (2010).
  20. Shinohara, K., Kodera, N., & Oohashi, T. Single-molecule imaging of photodegradation reaction in a chiral helical π-conjugated polymer chain. J. Polym. Sci. Part A: Polym. Chem. 48, 4103-4107 (2010).
  21. Shinohara, K., Kodera, N., & Ando, T. Single-Molecule Imaging of a Micro-Brownian Motion of a Chiral Helical π-Conjugated Polymer as a Molecular Spring Driven by Thermal Fluctuations. Chem. Lett. 38, 690-691 (2009).
  22. Casuso, I., Kodera, N., Le Grimellec, C., Ando, T. & Scheuring, S. Contact-mode high-resolution high-speed atomic force microscopy movies of the purple membrane. Biophys. J. 97, 1354-1361 (2009).
  23. Yamamoto, D., Uchihashi, T., Kodera, N., & Ando, T. Anisotropic diffusion of point defects in two-deimensional crystal of streptavidin observed by high-speed atomic force microscopy. Nanotecnol. 19, 384009 (2008).
  24. Fukuma, T., Okazaki, Y., Kodera, N., Uchihashi, T. & Ando, T. High resonance frequency force microscope scanner using inertia balance support. Appl. Phys. Lett. 92, 243119 (243113 pages) (2008).
  25. Yamashita, H., Kodera, N., Miyagi, A., Uchihashi, T., Yamamoto, D. & Ando, T. Tip-sample distance control using photothermal actuation of a small cantilever for high-speed atomic force microscopy. Rev. Sci. Instrum. 78, 083702 (5 pages) (2007).
  26. Shinohara, K., Kodera, N., & Ando, T. Single molecular imaging of a micro-Brownian motion and a bond scission of a supramolecular chiral π-conjugated polymer as a molecular bearing driven by thermal fluctuations. Chem. Lett. 36, 1378-1379 (2007).
  27. Uchihashi, T., Kodera, N., Itoh, H., Yamashita, H. & Ando, T. Feed-forward compensation for high-speed atomic force microscopy imaging of biomolecules. Jpn. J. Appl. Phys. 45, 1904-1908 (2006).
  28. Kodera, N., Sakashita, M. & Ando, T. Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. Rev. Sci. Instrum. 77, 083704 (7 pages) (2006).
  29. Ando, T., Uchihashi, T., Kodera, N., Miyagi, A., Nakakita, R., Yamashita, H. & Sakashita, M. High-speed atomic force microscopy for studying the dynamic behavior of protein molecules at work. Jpn. J. Appl. Phys. 45, 1897-1903 (2006). (2007年 JJAP論文賞 受賞論文)
  30. Kodera, N., Yamashita, H. & Ando, T. Active damping of the scanner for high-speed atomic force microscopy. Rev. Sci. Instrum. 76, 053708 (5 pages) (2005).
  31. Ando, T., Kodera, N., Uchihashi, T., Miyagi, A., Nakakita, R., Yamashita, H. & Matada, K. High-speed atomic force microscopy for capturing dynamic behavior of protein molecules at work. e-J. Surf. Sci. Nanotech. 3, 384-392 (2005).
  32. Kodera, N., Kinoshita, T., Ito, T. & Ando, T. High-resolution imaging of myosin motor in action by a high-speed atomic force microscope. Adv. Exp. Med. Biol. 538, 119-127 (2003).
  33. Ando, T., Kodera, N., Naito, Y., Kinoshita, T., Furuta, K. & Toyoshima, Y. Y. A High-speed Atomic Force Microscope for Studying Biological Macromolecules in Action. ChemPhysChem 4, 1196-1202 (2003).
  34. Ando, T., Kodera, N., Maruyama, D., Takai, E., Saito, K. & Toda, A. A high-speed atomic force microscope for studying biological macromolecules in action. Jpn. J. Appl. Phys. 41, 4851-4856 (2002).
  35. Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K. & Toda, A. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl Acad. Sci. USA 98, 12468-12472 (2001).

総説・解説

  1. T. Uchihashi, N. Kodera, and T. Ando. High-speed Atomic Force Microscopy. Chapter 22, pp.481-518 in Noncontact Atomic Force Microscopy Vol.3 (Seizo Moprita, Franz J. Giessibl, Ernst Meyer, Roland Wiesendanger, Eds) 527 pp. Springer (2015).
  2. 古寺哲幸、内橋貴之、安藤敏夫「高速原子間力顕微鏡による生体分子のナノ動態撮影」日本物理学会誌 69, 459-465
  3. Ando, T., Uchihashi, T., & Kodera, N. High-speed AFM and applications to biomolecular systems. Annu. Rev. Biophys. 42, 393-414 (2013).
  4. 内橋貴之, 古寺哲幸, リアルタイム原子間力顕微鏡の開発とタンパク質の機能動態イメージング. 光学 42, 89-94 (2013).
  5. Ando, T., Uchihashi, T., & Kodera, N. High-speed atomic force microscopy. Jpn. J. Appl. Phys. 51, 08KA02 (15 pp) (2012).
  6. 安藤敏夫, 古寺哲幸, 高速原子間力顕微鏡によるタンパク質の動態撮影. 生物物理 51, 022-025 (2011).
  7. 古寺哲幸, 安藤敏夫, 高速原子間力顕微鏡による歩行運動中のミオシンVのビデオイメージング. ライフサイエンス新着論文レビュー, http://first.lifesciencedb.jp/archives/1480, (2010).
  8. Ando, T., Uchihashi, T., Kodera, N., Yamamoto, D., Miyagi, A., Taniguchi, M. & Yamashita, H. High-speed AFM and nano-visualization of biomolecular processes. Pflugers Archiv Eur. J. Physiol. 456, 211-225 (2008).
  9. Ando, T., Uchihashi, T., Kodera, N., Yamamoto, D., Taniguchi, M., Miyagi, A. & Yamashita, H. High-speed atomic force microscopy for observing dynamic biomolecular processes. J. Mol. Recognit. 20, 448-458 (2007).
  10. 安藤敏夫, 古寺哲幸, 高速ビデオレートAFM. 計測と制御 45, 99-104 (2005).
  11. 安藤敏夫, 古寺哲幸, 生体分子のナノ動態撮影-リアルタイムAFM-. バイオインダストリー 21, 10-19 (2004).