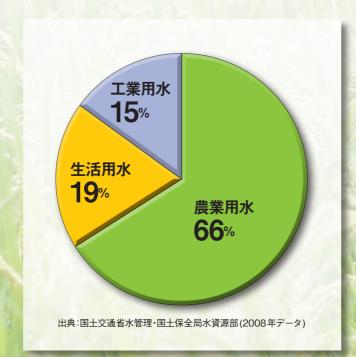

省エネルギー、超節水型の 植物工場を開発する

世界の水消費の約7割が農業用水に使われている。しかも、人口の増加や工業化、気候変動などで世界的に深刻な水不足 が起きている。


これまで水に恵まれてきた日本も例外ではない。日本でも河川水・地下水の約66%を農業に使っており、夏場の渇水によ る農作物の不作も目立ってきた。限られた水資源を有効に活用するために、省エネルギーで節水、再利用につながる新しい 農業システムが求められる。

JSTのCREST「持続可能な水利用を実現する革新的な技術とシステム」研究領域における「超節水精密農業技術の開発」 では、東京農工大学、桐蔭横浜大学、東京大学の農工連携により、作物の根の周りにだけ給水し、作物が使った分だけ補給 する「地中灌水システム」を極めることで、省エネルギー・超節水型の植物工場モデルづくりに取り組んだ。この技術は、ビ ルの中の都市型植物工場や、世界の乾燥地帯の節水農業にも広く応用が期待される。

世界の水の 7割が農業用 に使われている

日本も水資源の 約66%が農業用水

作物と対話し、篤農家の知恵を生かす

古代よりため池などを築いて、狭い耕地を賢く利用してきた日本。CRESTの研究代表者、澁澤栄東京農工大学大 学院農学研究科教授は、その知恵に学び、作物と対話することで、新しい省エネルギー・超節水型の植物工場をめ ざしている

【10分の1の水で 作物は育つ

「日本は、『砂漠の島』です」

澁澤さんの刺激的な発言でインタビューが 始まった。急峻な山が多い日本は降った雨が一 気に海に流れ、火山灰地は急速に雨水を吸い 込むために地表は乾ききってしまう。しかし国土 が砂漠にならなかったのは、数千年も前の縄文 時代から先人が灌漑用水やため池をつくり、森 や里山を整備してきたからである。しかし、高度 経済成長期から水の需要が急増し、渇水による 不作が増えている。いま、新しい発想の農業が 求められている。

これまでの農業は、耕作地全体にまんべんな く水を供給してきた。そのため、地表から蒸発 し、地下に浸み込む水が多かった。

「本当に作物が必要とする水はどの程度か、 作物の周りにだけ効果的に給水できないか と

澁澤 栄 (しぶさわ さかえ)

学科助手、87年北海道大学農学部農業工学科助手 90年島根大学農学部助教授、93年東京農工大学農 学部環境・資源学科助教授。2010年より現職

考えた澁澤さんは、石川県農業短期大学助手 時代の1985年に、「ファイトテクノロジー(植物 生産工学)研究会」を立ち上げ、農学と工学の 研究者が集まって科学的な探求を始めた。

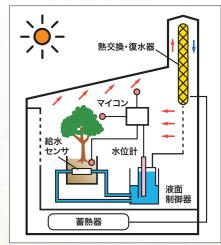
「基本は『作物に聞き』『篤農家の知恵に学ぶ』 ことでした。作物の成長過程に応じて必要とす る水量や、農家が日照や水温に合わせて田の 水位を調節する経験知などを、作物、植物生理 学、計測工学、環境工学などで解明し、精密農 業をめざすことをテーマにした」。

専門用語は独特でローカル性もある。農学、 工学研究者が分野を超えて会話するための用 語集をつくり、言葉を統一することで異分野の 若手研究者をどんどん引き入れた。

1993年に農工大に移り、毛管現象を利用し て根が吸った分だけ根の周りに給水する「地中 灌水システム」を確立した。この技術をもとにト マトなどの栽培実験を行い、米国のネバダ大と も現地でハニーサックル(ハーブの一種)の灌水 実験を行うなど、幅広く研究を進めた。この地中 灌水システムにより従来の10分の1の水で作物 が育てられることを立証した。

被災地の復興農業、 南米での米づくりにも貢献

一連の成果をもとに、澁澤さんらはCRESTに 応募した。


農工大にプロトタイプ植物工場を建てて、ト マトやコマツナなどの栽培実験を行った。桐蔭 横浜大学の杉本恒美教授のグループが、音波 などを使って根の周りの水分の変化を精密に観 測する技術に取り組んだ。澁澤さんら農工大の グループは根が吸い上げた分だけ水を補給し 灌水量を60%減らす負圧差地中灌水方式を開 発。東京大学の藤田豊久教授のグループが温 室内で蒸発・蒸散する水の回収・再利用を含め た省エネルギー施設環境システムの開発を担

5年間の研究を通じて、数か月にわたる無給 水運転が可能な省エネルギー・超節水型の植 物工場モデルを確立した。

研究成果は、実用化に向けて、NEDO(新エネ ルギー・産業技術総合開発機構) のスマート農

業関連の研究、JSTのA-STEP(復興促進プロ ジェクト) の精密復興農業モデルの構築、JST とJICA(国際協力機構) による「SATREPS(地 球規模課題対応国際科学技術協力事業)」に おけるラテンアメリカでの省資源稲作などのプ ロジェクトに広がっている。

「研究を通じて、ワールドワイドに研究者の ネットワークが広がったことが大きいですね。 コロンビアの稲作では省エネルギー、省資源 化で国際競争力のある米づくりを実現したいと 思っていますし、水資源が貴重な中東やアフリ カでも超節水精密農業が期待できます。日本 でも1980年代から植物工場に取り組んでいま すが、省エネ、超節水型の植物工場とすること で産業としての可能性が拡大しています」と、 熱く語った。

東京農工大学のプロトタイプ植物工場

実験風景 (トマトの栽培)

12 JSTnews December 2016