JST and ANR (France) jointly fund three research projects in the Edge AI field under the Strategic International Collaborative Research Program (SICORP) framework

The Japan Science and Technology Agency (HASHIMOTO Kazuhito, President) has approved funding for three new joint research projects in the research field of “Edge AI” under the SICORP*1 program (Attachment 1).

JST and ANR*2 jointly called for proposals from January 2023 to April 2023 and received a total of eleven proposals. Three projects were selected after evaluation by a panel of experts in both countries and a joint review (Attachment 3). The projects will start from December 2023, and follow the 2x2 international academia-industry framework with a predicted research period of four years (48 months).

*1 SICORP: https://www.jst.go.jp/inter/english/index.html
*2 ANR (L’Agence nationale de la recherche): https://anr.fr/en/

Attachments
1. Abstracts of selected projects
2. Abstract of the joint call for proposals
3. Experts for the evaluation (Japan side)

Enquiries
Department of International Affairs, JST
K’s Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076
SUGAWARA Masae
Tel: +81-3-5214-7375 Fax: +81-3-5214-7379
E-mail: jointfr[at]jst.go.jp
Abstracts of selected projects

<table>
<thead>
<tr>
<th>Title</th>
<th>Principal Investigator (Japan side)</th>
<th>Position and Institution</th>
<th>Research Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightweight Edge Artificial Intelligence for Sensing and Wireless Communications in Connected Factories (LIGHT-SWIFT)</td>
<td>KANEKO Megumi (Academia)</td>
<td>Associate Professor, Information Systems Architecture Science Research Division, National Institute of Informatics</td>
<td>The objective of this research is to develop high-performance and power-saving lightweight Edge AI and wireless access technologies, that can be utilized in Industrial IoT devices (IIoT) with limited computational and battery capabilities. Specifically, the Japanese team will develop a lightweight Deep Reinforcement Learning framework tailored to IIoT devices, and design a wireless access optimization method which achieves both high energy-efficiency and reliability. The French team will design a low-power AI compression technique and hardware/software solutions that can be implemented in IIoT, and investigate applications such as anomaly detection using acoustic sensors in factories. By developing this lightweight Edge AI technology that can be used in IIoT, the joint team aims to realize power-saving, low latency, highly efficient, and reliable wireless communications and acoustic sensing, thereby enabling applications such as operational monitoring or anomaly detection within smart factories.</td>
</tr>
<tr>
<td></td>
<td>Olivier BERDER (Academia)</td>
<td>Professor, CNRS-IRISA/University of Rennes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Julien ROLAND (Industry)</td>
<td>Lead Software and Machine Learning Engineer, Wavely</td>
<td></td>
</tr>
</tbody>
</table>
This research aims to develop a smart and highly adaptive Edge AI empowered transformer-based human robot collaboration (HRC) system for assembly tasks in Industry 4.0X. The Japanese team will work on realizing the HRC system that includes state monitoring of workers using AI cameras and giving instructions to robots in natural language. In addition, data for dexterous manipulations will be collected through teleoperation with haptic feedback and use cases for HRC-based assembly tasks will be verified. The French team will focus on developing foundational AI models and compression technologies for robot assembly tasks that incorporate computer vision data from Edge AI cameras. Additionally, the team will supply the hardware environment to facilitate the operation of Edge AI. The research project aims for low-energy consumption, reduced latency, and privacy-protected natural language instruction for assembly robots, while also allowing robots to understand and adapt to various changes in worker states and the environment through Edge AI cameras. The project is expected to provide flexibility and intelligence in automation for Industry 4.0X, addressing the growing demand for customized products and the shortage of qualified labor.
The objective of this research is to develop the AI technology to recognize various acoustic events around us, separate semantic sound objects, and apply it to communication services. Using two use cases as examples, immersive communication and home monitoring/assistance (watching over the house), we will design an embedded system to implement them. Specifically, by analyzing and separating various sounds and adding metadata, the system can transmit only the necessary sounds according to the situation and spatially reconstruct and reproduce them.

The Japanese team will develop the separation and extraction of sound sources and their application to immersive communication. The French team will study the implementation of necessary tools on Edge AI devices and their application for immersive communication and home monitoring/assistance. The developed technology will also be proposed to the International Standardization of Mobile Communication Systems (3GPP) for standardization in communication services.

The technology is expected to be applied, for example, to web conferencing systems that block out the sounds of daily life and allow only the voices necessary for business communication to pass through, and to privacy-conscious communication such as home monitoring/assistance. This enables new inclusive communications that allow local and remote participants in international conferences to share experiences.
Abstract of the joint call for proposals

Funding agencies:
 Japan side: JST
 France side: L'Agence nationale de la recherche (ANR)
 https://anr.fr/en/

Field
 Projects must be joint research between the two countries in the field of Edge AI, following the 2x2 international academia-industry framework.

Eligibility
 Japan side: any researcher actively conducting research that is affiliated with a domestic Japanese research institution or company, regardless of nationality, is eligible to apply.

Research period
 4 years (48 months)

Amount of funding
 Japan side: up to 60 million yen from JST to the researchers (Japan side) per project over 4 years, including overhead costs (30 percent of direct costs).

Evaluation method
 Based on evaluation by experts from the two countries and discussion between JST and ANR.

Evaluation criteria
I. R&D innovation, technical excellence and societal relevance
 - Level of innovation of the scientific and technical concept
 - Scientific and technical quality of the solution
 - Assessment of the social, economic and environmental opportunities and risks associated with scientific and technological innovations

II. Feasibility and implementation efficiency
 - Quality of the science and technology approach
 - Adequacy of the workplan to the budget, resources, time schedule, and/or infrastructure.
III. Significance in consortium and international collaboration
- Project management, governance, and consortium structure
- Relevance of the partners with respect to the proposal
- Added value from bilateral cooperation and synergy effects

IV. Exploitation and dissemination
- Relevance of the proposed solutions for targeted scientific and industrial applications
- Validity of the plan for standardization effort and open data policy of research outcomes
- Validity of the plan for possible operation and/or commercialization in practical use
Experts for the evaluation (Japan side)

<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Institution</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHTSUKI Tomoaki</td>
<td>Professor, Faculty of Science and Technology, Keio University</td>
<td>Program Officer</td>
</tr>
<tr>
<td>OTA Kaoru</td>
<td>Professor, Division of Engineering, Graduate School, Muroran Institute of Technology</td>
<td>Advisor</td>
</tr>
<tr>
<td>KAWASHIMA Hideyuki</td>
<td>Associate Professor, Faculty of Environment and Information Studies, Keio University</td>
<td>Advisor</td>
</tr>
<tr>
<td>KOIZUMI Norihiro</td>
<td>Associate Professor, Graduate School of Informatics and Engineering, University of Electro-Communications</td>
<td>Advisor</td>
</tr>
<tr>
<td>SAITO Hideo</td>
<td>Professor, Faculty of Science and Technology, Keio University</td>
<td>Advisor</td>
</tr>
<tr>
<td>SHIMAMURA Tetsuya</td>
<td>Professor, Graduate School of Science and Engineering, Saitama University</td>
<td>Advisor</td>
</tr>
<tr>
<td>SUGAYA Midori</td>
<td>Professor, College of Engineering, Shibaura Institute of Technology</td>
<td>Advisor</td>
</tr>
<tr>
<td>NISHIO Takayuki</td>
<td>Associate Professor, School of Engineering, Tokyo Institute of Technology</td>
<td>Advisor</td>
</tr>
<tr>
<td>HASEGAWA Mikio</td>
<td>Professor, Faculty of Engineering, Tokyo University of Science</td>
<td>Advisor</td>
</tr>
<tr>
<td>HAYASHI Kazunori</td>
<td>Professor, Center for Innovative Research and Education in Data Science, Institute for Liberal Arts and Sciences/ Graduate School of Informatics, Kyoto University</td>
<td>Advisor</td>
</tr>
</tbody>
</table>