

March 8, 2022 Japan Science and Technology Agency (JST) 5-3, Yonbancho, Chiyoda-ku, Tokyo 102-8666 URL https://www.jst.go.jp/EN

JST is to fund three research projects in the field of Hydrogen Technologies, coordinated by Japan and Germany within the framework of the Strategic International Collaborative Research Program (SICORP)

JST will fund three new international cooperation projects in the field of Hydrogen Technologies (Appendix 1). The projects will operate through the SICORP^{*1} program, joint funded by JST and German funder BMBF^{*2} following the 2x2 international academia-industry framework.

A joint call for proposals by JST and BMBF was held from June to September in 2021, and received a total of six proposals. Three were selected after evaluation by a panel of experts (Appendix 3). The projects will begin in April 2022, with a predicted research period of three years.

*1) SICORP: https://www.jst.go.jp/inter/english/index.html

*2) Federal Ministry of Education and Research (BMBF): https://www.bmbf.de/bmbf/en/home/home_node.html

Attachments

Appendix 1: Abstracts of the new projects Appendix 2: Abstract of the joint call for proposals Appendix 3: Experts for the evaluation (Japan side)

Contact

Department of International Affairs, JST K's Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076 Sato Masaki, Mr. Tel: +81-3-5214-7375 Fax: +81-3-5214-7379 E-mail: jointge[at]jst.go.jp Appendix 1: Abstracts of the new projects

	Project Title	Principal Investigator (JST side: Academia) Principal Investigator (JST side: Industry) Principal Investigator (BMBF side: Academia) Principal Investigator (BMBF	Position and Institution	Abstract of Project
1	Durable and Efficient	MIYAZAKI Kohei	Associate Professor.	The objective of this research is to construct a
	Compound Electrodes for		Graduate School of	polymer electrolyte membrane (PEM) water
	Hydrogen Generation in		Engineering, Kyoto University	electrolysis electrode design with excellent
	PEM Electrolysis	HORIKAWA	Executive Officer and General	durability and energy efficiency by introducing
		Matsuhide	Manager,	a new titanium current collector and pore
			Technical Development	titanium sheet, as well as a cathode using a
			Center,	new electrocatalyst. Specifically, the Japanese
			Toho Titanium Co., Ltd.,	team will optimize the particle size distribution

		SCHRODER Daniel	Professor	and chemical composition of titanium
			Institute of Energy and	powders optimize the structure of titanium
			Process Systems Engineering	sheets with excellent ass diffusion properties
			Frocess Systems Engineering,	sheets with excellent gas dilusion properties,
			Technische Universität	and increase the activity of the electrocatalyst
			Braunschweig	used in the cathode, while the German team
		HICKMANN	CEO,	will fabricate a current collector using titanium
		Thorsten	Eisenhuth GmbH & Co. KG	powder, construct a water electrolysis cell,
				evaluate its durability and energy efficiency,
				and analyze it by numerical simulation.
				Through the joint research by the two teams, it
				will be possible to carry out the entire process
				of PEM water electrolysis from material
				development to performance evaluation in a
				complementary manner, which is expected to
				accelerate the speed of research and
				development for the coming hydrogen society.
2	Sustainable and	SAWAE Yoshinori	Professor,	This joint project explores novel,
	Hydrogen-Compatible		Faculty of Engineering,	environmentally friendly polymeric and
	Sealing Materials: Key		Kyushu University	elastomeric sealing materials which show
	Element for Ensuring	HONDA Shigenobu	Manager of technical planning	secure sealability with enhanced low-friction
	Safety and Diversity of		section,	and anti-wear characteristics in liquid and
	Hydrogen Supply Network		NOK Corporation	gaseous hydrogen for establishing safe,

		GRADT Thomas	Head of Division "Tribology	efficient and diverse hydrogen supply network.
			and Wear Protection",	Especially, the project focuses on static and
			Federal Institute for Materials	dynamic sealing elements that have a crucial
			Research and Testing (BAM)	role of ensuring long term safety and
				efficiency of hydrogen supply network.
		RÖCKER Thorsten	Scientific Expert,	Candidate materials are provided by the
			Freudenberg Technology	industrial members. Friction and wear tests in
			Innovation SE & Co. KG	high temperature and high-pressure hydrogen
				gas are conducted in Kyushu University, and
				tribological behavior in liquid hydrogen under
				cryogenic conditions are evaluated in BAM.
				The mechanisms of the processes at tribo-
				interface are investigated through various
				surface analyses. By integrating the
				knowledge obtained for hydrogen in both
				thermodynamically extreme conditions, the
				project will establish an advanced sealing
				technology for hydrogen in various forms,
				which are supplied to the industrial members
				for further improvement of materials.
3	Green ammonia synthesis	HORITA Teruhisa	Director,	This collaborative research aims to develop a
	and utilization for marine		Research Institute for Energy	new process for ammonia synthesis and direct
	transport by SOC		Conservation,	utilization of ammonia in fuel cells.

Technology		National Institute of Advanced	Specifically, the Japanese research team will
		Industrial Science and	develop fuel electrodes in Solid Oxide Fuel
		Technology (AIST)	Cells (SOFC) and clarify their degradation
	SUMI Hiroshi	Manager,	mechanism for the direct utilization of
		MORIMURA SOFC	ammonia. The German team will develop a
		TECHNOLOGY CO., LTD.	new ammonia synthesis process by utilizing
	MIHAILS Kusnezoff	Head of Department of	Solid Oxide Electrolysis Cells (SOEC) with
		Materials and Components,	high efficiency. Through collaborative and
		Institute for Ceramic	complementary research among two
		Technologies and Systems	countries, it is expected to propose a new
		(IKTS),	energy loop concept based on green
		Fraunhofer Institute	ammonia for energy storage, transport, and
	MICHAEL Haid	CEO,	utilization, which is suitable for marine
		EDL Anlagenbau Gesellschaft	application.
		mbH	

Appendix 2: Abstract of the joint call for proposals

Funding agencies: Japan side: JST Germany side: BMBF, Federal Ministry of Education and Research https://www.bmbf.de/bmbf/en/home/home_node.html

Field

Projects must be joint research between the two countries in the field of Hydrogen Technologies

Eligibility

Japan side: any independent researcher personally affiliated with (and actively conducting research at) a domestic Japanese research institution, regardless of nationality, is eligible to apply.

Research period

3 years

Amount of funding

Japan side: up to 54.6 million yen from JST to the researchers (Japan side) per project over 3 years, including overhead costs (30 percent of direct costs).

Evaluation method

Based on evaluation by experts from the two countries and discussion between JST and BMBF.

Evaluation criteria

I. Fulfilment of the formal prerequisites for funding

II. Compliance with "1: Aim and purpose of program" and "2: Object of funding" in the call document

- III. Scientific and technological criteria
- a. Quality and originality of the project

b. Scientific and technological expertise of the applicant and the German and Japanese partners involved

c. Scientific benefits and prospects for the exploitation of the expected results

- IV. Criteria concerning international cooperation
- a. Experience of the applicant in international cooperation

b. Establishment of new or consolidation of already existing bilateral/international partnerships

- c. Quality of the cooperation and added value for partner institutions
- V. Plausibility and feasibility of the project (financing; milestones; time frame)

Member Name	Position and Institution		
KATO Masako*	Professor, School of Biological and Environmental Sciences		
	Kwansei Gakuin University		
IIYAMA Akihiro	Director, Fuel Cell Nanomaterials Center, University of		
	Yamanashi		
ISHITANI Osamu	Professor, School of Science, Tokyo Institute of Technology		
EGUCHI Koichi	Professor, Graduate School of Engineering, Kyoto University		
KITAGAWA Naomi	Professor, Graduate School of Engineering, Tohoku		
	University		

Appendix 3: Experts for the evaluation (Japan side)

* Program Officer