August 6, 2020 Japan Science and Technology Agency 5-3, Yonbancho, Chiyoda-ku, Tokyo

JST to fund 11 projects on COVID-19-related research under the J-RAPID Collaborative Research/Survey Program for Urgent Research framework

JST has decided to award funding to 11 projects for COVID-19 related research under the J-RAPID Collaborative Research/Survey Program for Urgent Research* framework (Appendix 1).

JST launched the J-RAPID call targeting researchers who are currently in collaboration with or anticipate collaboration with foreign-based researchers for non-medical research directly applicable to mitigation of the ongoing COVID-19 outbreak (Appendix 2).

A total of 23 proposals were submitted to the call, out of which 11 were selected for funding following an evaluation by a panel of experts (Appendix 3).

Supported research is ongoing and the support period is scheduled to last until March 2021.

* J-RAPID Collaborative Research/Survey Program for Urgent Research URL : https://www.jst.go.jp/inter/english/program_e/j-rapid_e/j-rapid.html

Appendix 1: Abstracts of funded projects Appendix 2: Overview of call for proposals Appendix 3: Evaluation experts list

Contact SATO Masaki Department of International Affairs Japan Science and Technology Agency K's Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076 Tel: +81-3-5214-7375 Fax: +81-3-5214-7379 E-mail: rapid[at]jst.go.jp

Appendix 1

Abstracts of funded projects

1. Collaboration with the National Science Foundation (NSF), United States

	Project Title	Principal Investigator (Japan-side) Principal Investigator (US-side)	Position and Institution	Abstract of Project
	Real-time monitoring of	Haramoto Eiji	Professor, Interdiscipli nary Center for River Basin Environment, University of Yamanashi	This study aims to develop a novel real-time surveillance system for the prevalence of COVID-19 through a wastewater-based epidemiology (WBE) approach. Novel coronavirus (SARS-CoV- 2) RNA will be detected in raw sewage of wastewater treatment plants, where viruses shed in feces of all infected individuals, including asymptomatic cases, in their service areas are gathered. For this purpose, three
1	novel coronavirus (SARS-CoV-2) infections using wastewater- based epidemiology approach	Kyle Bibby	Associate Professor, Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame	specific research activities will be conducted as follows: 1) the development of novel concentration and detection methods for SARS-CoV-2 in raw sewage, 2) the application of the developed methods to detection of SARS- CoV-2 in raw sewage samples of wastewater treatment plants in Japan and other countries in order to elucidate the actual prevalence of the virus in the studied regions, and 3) the evaluation of the applicability of WBE approach to COVID-19 surveillance based on the comparison between the current epidemiological data (numbers of confirmed COVID-19 patients) and concentrations of SARS-CoV-2 in raw

				nowage. The outcomes of this study will
				sewage. The outcomes of this study will
				contribute greatly to control the
				spread and recurrence of COVID-19
				through a real-time early warning
				system based on routine monitoring of
				SARS-CoV-2 in raw sewage.
				Since the novel coronavirus disease
			Assistant	(COVID-19) emerged in December 2019 in
			Professor,	China, it has rapidly propagated around
			Graduate	the world, leading to one of the most
			School of	significant pandemic events in recent
			Advanced	history. The first COVID-19 case in
		Mizumoto	Integrated	Japan was reported on January 15, and
		Kenji	Studies in	the number of cases reached 16,385 with
			Human	771 deaths on May 20, 2020. Capturing
			Survivability	COVID-19 transmission dynamics is
			/Hakubi	important to guide the timing and
	Modeling the effect of		Center, Kyoto	intensity of intervention strategies,
			University	but limited PCR testing capacity has
			University	made it difficult to record actual
	comprehensive			numbers of COVID-19 cases in Japan.
	interventions			
	including			Several rapid diagnostic tests
2	several rapid			undergoing approval processes will
	diagnostic tests on COVID-19 transmission			support uncovering the transmission
				dynamics, necessitating that the
				examination of several characteristics
		Gerardo Chowell	Professor,	of tests including time-dependent
			School of	sensitivity and specificity.
			Public	In this proposal, we aim to
			Health,	1) Capture an epidemic trajectory in
		ONOWETT	Georgia State	Japan given adjustments in testing
			University	capacity
				2) Guide optimal combination of
				several tests
				3) Guide intervention efforts, such as
				isolation of infectious individuals,
				quarantining of suspected contacts, and
				minimizing contact rates without a
				complete lock down.

				In object 2), we examine a) time- dependent sensitivity and specificity of the tests, b) time gap between testing and results, c) maximum number of tests administered per day and d) targeted populations. For this purpose, we employ a compartmental transmission model (SEIR model) taking into account aspects of testing along with other constraints (e.g. availability) of the tests. For estimation, we plan to use not only a maximum likelihood estimate, but also the Markov chain Monte Carlo method in a Bayesian framework to capture underlying transmission dynamics.
3	Development of the key reaction and the mechanistic studies toward	Niwayama Satomi	Professor, Graduate School of Engineering, Muroran Institute of Technology	Developing drugs against COVID-19 is currently of paramount importance. For example, Remdesivir is a prodrug having a structure similar to a nucleotide able to prohibit the viral RNA polymerase production process, although it comes with some side effects. Similar anti-viral activities with greater potencies and less side effects may be expected from other nucleotide derivatives as well, which may be identified by the synthesis of libraries of various derivatives of
	discovery of new anti- COVID 19 drugs	Kendall Houk	Professor, Department of Chemistry and Biochemistry, University of California, Los Angeles	nucleotides or nucleosides as well as other compounds having different structures for screening of their anti- COVID-19 activities. In this research, we will develop key reactions that enable efficient production of drug candidates under environmentally benign and practical conditions toward this goal. Water is among the most

environmentally friendly and least
expensive solvents. Desymmetrization of
symmetric compounds is one of the most
cost-effective reactions because the
starting symmetric compounds are
typically easy to obtain on a large
scale from inexpensive sources or are
otherwise commercially available at low
cost. Therefore, desymmetrization of
symmetric compounds mediated by water
would make a significant contribution
to "green chemistry" and to drug
discovery, although distinguishing the
identical functional groups in the
starting symmetric compounds is
considered challenging, and success of
such reactions is limited. To this
end, we had previously reported highly
efficient selective monohydrolyis
reactions of symmetric diesters in
mainly aqueous media. Therefore, in
this research, we will study these
selective monohydrolysis reactions and
enzymatic monohydrolysis reactions of
symmetric diesters from both the
synthetic and mechanistic points of
view. The mechanistic studies will be
carried out in collaboration with
Professor Kendall N. Houk, who is a US-
based authority on theoretical and
computational organic chemistry.
Success of this research will
contribute not only to discovery of new
anti-COVID-19 drugs but also to the
field of green chemistry.

		Sakai Ryuichi	Professor, School of Fisheries Sciences, Hokkaido University	We recently assembled an international collaborative team to find anti-flavivirus drug leads from marine organisms (e-ASIA). The team is comprised of a marine natural product chemist (Sakai, Hokkaido University, Japan), a synthetic chemist (Romo, Baylor University, USA), a medicinal chemist (Hull, Baylor University, USA)
4	Development of novel anti- SARS- CoV-2 drug leads from marine organisms	Daniel Romo	Schotts Professor of Chemistry, Department of Chemistry and Biochemistry, Baylor University	a RNA biologist (Chimnaronk, Mahidol University, Thailand) and a structural biologist (Tanaka, Tohoku University, Japan). As a team, we developed a drug development pipeline, that will span lead discovery to lead optimization with the goal of developing a unique set of drug candidates rapidly. We are screening anti-flavivirus compounds by a high throughput screening protocol developed by Chimnaronk. We have already assayed 120 small molecules (68 natural products) and found several marine derived compounds that inhibit infection of flavivirus to mammalian cells. These are exciting preliminary results showing great potential for marine-derived natural products as novel anti-flaviviral agent. We therefore propose here to use our marine library to discover anti-SARS- CoV-2 compounds, taking advantage of our unique international collaboration. In this proposal Sakai will collect marine organisms and isolate compounds that inhibit infection of SARS-CoV-2 to mammalian cells. Sakai will also study the mechanism of inhibition to identify molecules with unique modes of action. Romo will utilize his

				'pharmacophore-directed retrosynthesis' approach to quickly validate a hypothesized pharmacophore and identify simplified versions of the initial hit. A collection of 2-3 simplified derivatives, with the highest potency and initial pharmacokinetic properties, in comparison to the initial lead will be tested in animal models for anti-SARS- CoV-2 efficacy.
	Development of antigen display system using hyperthermoph ilic archaeal viruses for emergent vaccine production	Mochizuki Tomohiro	Specially- appointed Assistant Professor, Earth-Life Science Institute (ELSI), Tokyo Institute of Technology	This project aims to induce a hyperthermophilic archaeal virus to display short fragments of SARS-CoV-2 spike proteins on its virion surface, intended for application in future emergent vaccine mass production. Among the many obstacles in developing successful immune system defenses against an emergent disease, efficiency in producing antigens both rapidly and abundantly is a key challenge. In conventional methods involving cell cultivation (e.g. <i>E. coli</i> , insect,
5		Kenneth Stedman	Professor, Department of Biology, Portland State University	cultivation (e.g. <i>E. coli</i> , insect, animal, or human cells), contamination becomes a serious concern, especially in the mass production stage. Our new proposed system using hyperthermophilic organisms with an optimal growth temperature of 90 °C can easily minimize such risk. Recently, we have succeeded in developing a genetic modification system for one of the hyperthermophilic archaeal viruses. In this project, after identifying the amino acid residues of the capsid structural proteins which are located at the surface of the virion particle, we will

	modify the capsid protein genes to
	express external peptides that will be
	displayed as appendages on the virion
	surface. Eventually, by using part of
	the SARS-CoV-2 spike protein (S
	protein) as this insertion, we hope
	that the mutated archaeal virus can
	serve as an antigen for COVID-19
	vaccination applications.
	With a timely and successful research
	outcome, our system may potentially be
	utilized against COVID-19 beyond the
	second half of 2021, at the earliest.
	Since both the host archaea and the
	virus can be grown rapidly in very
	simple media and conditions - only
	requiring near boiling temperature
	control — the virus-host system can
	easily be grown in facilities without
	stringent aseptic cultivation
	platforms.

2.Collaboration with UK Research and Innovation (UKRI), UK $% \mathcal{C} = \mathcal{C} = \mathcal{C} + \mathcal{$

		Principal Investigator		
	Project Title	(Japan-side)	Position and	Abstract of Project
		Principal	Institution	
		Investigator		
	1	(UK-side)		
		Hayashi Yoshitsugu	Director & Professor, Frontier Research Institute/Cen ter for Sustainable Development and Global Smart City, Chubu University	The COVID-19 pandemic has spread rapidly across the world, resulting in losses of many valuable lives. This has become the biggest challenge to human society since the Spanish Flu in 1918. Now in the 21st century, the whole world is more connected by convenient transport systems and information networks than at any time in history. The transport sector has been deeply affected by the COVID-19 pandemic. On one hand, it unintentionally
6	Impacts of COVID-19 on the transport and logistics sector and countermeasur es	Greg Marsden	Professor, Institute for Transport Studies, University of Leeds	contributed to the spread of the virus through passenger travel, while the disruption to supply chains undermined economic activities in some sectors. On the other hand, transport is an integral part of solutions to mitigate the impacts of COVID-19, for example through the delivery of humanitarian goods and services and to facilitate resilient supply chains for the recovery phase. This research aims to investigate the following points related to the transport and logistics sector, by interviewing experts and general public globally, in collaboration with the World Conference on Transport Research Society (WCTRS). [1] Impacts: to investigate the

	1	1	1	Τ
				<pre>impacts of COVID-19 [2] Preparedness: to investigate in what ways society had prepared for such a pandemic [3] Concurrent pandemic measures: to investigate what measures our society is currently taking to fight against this pandemic [4] Post-pandemic recovery measures: to suggest what our society should do after this pandemic [5] Long-term strategies: to explore how to generalize the findings from the above actions to tackle other public health threats. This research has already started as a voluntary activity together with WCTRS which established a Task Force (all the researchers are involved) in April 2020. With this funding support, we plan to provide more scientifically- sound evidence and feasible policy</pre>
				measures against COVID-19 and future
7	Investigation of the roles of SARS-CoV- 2-encoding genes on the COVID-19 pathogenesis and viral cross-species transmission	Sato Kei	Associate Professor, Institute of Medical Science, The University of Tokyo	As one of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV, we have revealed the difference on some virus-coding genes. Through interdisciplinary collaboration with a UK research team, we have demonstrated that a SARS-CoV-2- encoding gene is a potent interferon antagonist. Phylogenetic analyses and functional assays further revealed that SARS-CoV-2-related viruses from bats and pangolins also encode genes with strong anti-interferon activity. Through collaboration with the UK

		Massimo Palmarini	Director/Prof essor, MRC- University of Glasgow Centre for Virus Research	research team, we can investigate more than 50,000 SARS-CoV-2 sequences in the current COVID-19 pandemic. In this project, we collaborate with the UK research team, which is the center for SARS-CoV-2 sequencing analysis in UK, and conduct interdisciplinary research of virology and molecular phylogenetics on SARS-CoV-2/COVID-19. We aim to elucidate the molecular mechanisms of cross-species transmission of coronaviruses and their pathogenicity.
	National Online Survey	Morisaki Naho	Chief, Department of Social Medicine, National Center for Child Health and Development	Through this joint research between the CORONA x CODOMO project in Japan and the Co-SPACE project run by Dr. Polly Waite, we will conduct follow-up surveys to the already running "National Online Survey of Children's Quality of Life and Health in the COVID-19 Pandemic in Japan" to form a longitudinal study consisting of
8	of Children's Quality of Life and Health in the COVID-19 Pandemic in Japan (CORONA x CODOMO)	Polly Waite	Senior Clinical Research Psychologist, Departments of Experimental Psychology and Psychiatry, University of Oxford	repeated cross-sectional measures. Through frequent information exchange between the two teams, this project will compare results, share ideas for improvement of questionnaires as well ideas for social implementation of the research findings. This project will not only lead to academic findings of how a pandemic has negative impacts on children and young people's overall health, what support families need, and how this may vary according to situational factors, but will help both countries identify and implement measures which protect children and young people from deteriorating mental health over time in such a crisis.

3. Collaboration with Agence Nationale de la Recherche (ANR), France

	Project Title	Principal Investigator (Japan-side) Principal Investigator (France- side)	Position and Institution	Abstract of Project
		Minami Tsuyoshi	Associate Professor, Institute of Industrial Science, The University of Tokyo	Polymerase chain reaction (PCR), antigen test, and antibody tests are available for the diagnosis of viral infections. However, due to some remaining problems of the diagnostic methods related to required time, accuracy, and reagent stability (mainly with enzymes), there is currently an urgent need for the development of a new
9	Paper-Based Sensor Devices for Rapid and Accurate Detection of COVID-19	Anthony Genot	Head of Research, Laboratory for Integrated Micro Mechatronic Systems, French National Centre for Scientific Research (CNRS)	class of diagnostic methods for COVID-19 infections. In this project, we collaborate with a French research group (Principal Investigator: Dr. Anthony Genot) to create paper-based sensor devices (PSD) for rapid and accurate quantification of COVID-19 RNA. The PSD devices can be easily prepared through a printing process, which is a major advantage for the development of user- friendly, low-cost, and disposable devices. The mechanism of COVID-19 RNA detection relies on the specific aggregation of dispersed beads due to the binding of the RNA with complementary DNA, which can be observed as changes in optical properties. The French group will optimize the process of RNA extraction from the virus capsid, and conjugation of the complementary DNA on the dispersed beads. By utilizing their knowledge and

				materials, we will develop a rapid and accurate quantification method for COVID-19 RNA combining with image processing algorithms and machine learning. Our knowledge will be shared with the French group to boost this collaborative project. The quantitative
				analyses will also be carried out on PSD devices prepared under the optimal printing and manufacturing conditions. Finally, the PSD devices will be employed for real-sample analyses using samples from the patients infected by COVID-19. The analysis will be carried out in cooperation with the French group. We envision that this project will establish
				a platform for PSD devices applicable to medical diagnosis.
10	Molecular mechanism for SARS- CoV-2- specific immunologica I memory formation and maintenance	Murakami Masaaki	Professor, Division of Molecular Psychoimmunolo gy, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University	Immunological memory is a unique property of cells for the adaptive immune system mediated by T cells and B cells. Memory T cells and B cell, which are generated during primary immune reaction, can respond more quickly and strongly to infectious agents for eliminating them when they reencounter the same agents. These memory responses are a basis of vaccine strategy. We investigate memory T and B cells, and plasma cells specific for SARS-CoV-2 in samples from COVID-19 patients, patients recovered from the disease, and deceased patients from both Japan and
	maintenance	Simon Fillatreau	Professor Medical Faculty Universite de Paris Director	France. The joint research will be carried out to achieve the following five goals: (1) demonstration of the presence of memory T cells and B cells against SARS- CoV-2 in patients;

			Immunology,	(2) identification of specific markers
			Infectiology	for memory T cells and B cells against
			and	SARS-CoV-2;
			Haematology	(3) analysis of the ethnic differences
			Dept	of the memory T cells and B cells against
			Necker-Enfants	SARS-CoV-2 between Japan and France;
			Malades	(4) analysis of the correlation of the
			Institute	memory T cells and B cells against SARS-
				CoV-2 with HLA restriction, age,
				preexisting diseases, disease severity,
				and serum inflammatory mediators such as
				IL-6, IFN- α/β , TNF- α etc.;
				(5) investigation of the IL-6 amplifier
				role in the formation and maintenance of
				memory lymphocytes against SARS-CoV-2.
				Our research will provide useful
				information to promote globally the
				development of effective vaccination
				methodology and clinical interventions
				for COVID-19.
				The COVID-19 pandemic has caused
				serious disruptions to health systems
	How public		Professor,	across the world, regardless of a
	health,		Department of	country's socio-economic status or
	hospitals	Honda Ayako	Economics,	geographical location. In order to better
	and health		Sophia	understand the resilience of health
	professional		University	systems, this study looks at how
	s have		,	hospitals and health professionals at the
	adapted,			frontline of the healthcare response have
11	responded		Research	adapted, responded, and transformed the
	and		Director,	trajectory of the COVID-19 pandemic. The
	transformed		Population and	study also examines the attributes of
	the		Development	health systems that have facilitated
	disruption	Valéry	Center	and/or challenged healthcare providers'
	caused by	Ridde	(CEPED),	capacity to maintain their function in
	the COVID-19		French	the health system during the emergency,
	pandemic		National	and then draw viable policy
			Research	recommendations for what needs to be done
			Institute for	to strengthen health systems resilience

Sustainable	in preparation for future crises. The
Development	case study in Japan will be undertaken
(IRD)	with the support of JST and is part of
	multi-country research project involving
	Brazil, Canada, China, France and Mali
	(funded by ANR and CIHR). The larger
	research project applies a multi-case
	study approach in which the response of
	healthcare providers (both organizations
	and individuals) in the process of
	transforming the COVID-19 crisis
	situation is the unit of analysis. The
	research primarily uses qualitative data
	and employs a conceptual framework for
	analysis. A generic study protocol will
	be used by research teams in six
	countries to enable cross-country
	comparison of the case study results and
	consider the socio-economic, geographical
	and institutional contexts in the
	patterns of response to the pandemic. The
	research will add depth to the global
	debate on concrete approaches to
	improving the resilience of health
	systems. The study in Japan also includes
	analysis of financing and benefit
	incidence, which is often used as an
	indicator of progress towards universal
	health coverage (UHC). The financing and
	benefit assessments will be used as
	baseline measurements to examine the UHC
	impacts of COVID-19 on the Japanese
	health system. Further analysis will be
	undertaken after the pandemic to enable
	comparison with the baseline analysis.

Overview of call for proposals

1. About J-RAPID

The J-RAPID* program is dedicated to urgent support for collaborative activities between Japan-based and foreign-based researchers in conducting research related to mitigation of unanticipated events such as natural or anthropogenic disasters and similar areas.

J-RAPID aims to play an initial response role by promptly providing research support before ordinary projects implemented by the national government, academic societies, and others are able to do so.

J-RAPID supports international collaborative projects in collaboration with funding agencies and research institutes in foreign countries.

(*) Initiated by Dear Colleague Letter for New Zealand and Japan dated March 29, 2011 issued by the National Science Foundation (NSF) of the United States, JST launched the original "J-RAPID" call in April 2011.

2. Call for proposals

(1) Proposal field application requirements:

This program welcomes non-medical research related to the prevention and mitigation of effects of the COVID-19 pandemic conducted jointly with researchers supported by eligible foreign funding agencies. Japan-based researchers must either currently collaborate with, or anticipate to collaborate with, researchers based in foreign research institutions supported by eligible foreign funding agencies.

(2) Applicant eligibility (JST side):

Funding is available to researchers affiliated with universities, research institutions, corporations and other eligible entities based in Japan.

(3) Research period:Six months to one year

(4) Amount of funding (JST):Up to 6 million yen from JST to the researchers (Japanese team) per project, inclusive of overhead costs (10 percent of direct costs).

16

(5) Evaluation method:Based on evaluation by experts

(6) Evaluation Criteria

① Purpose and suitability for the target field of research The proposed research should be in line with the purpose and conditions of the call.

② Value of outcomes

The proposed research should be promising in terms of its potential value both academically and in terms of its ability to have an impact on real-world issues.

3 Synergy effects from collaboration

The proposed research should be shown to clearly benefit and derive added value from collaboration in terms of achieving its objectives.

(4) Suitability of the research plan The proposed research should have a detailed plan which is suitable in terms of its content, structure and implementation.

(5) Suitability of principal investigator

The principal investigator should have sufficient expertise and experience to successfully carry out the proposed research for the duration of the research period.

Evaluation experts list

Experts	for	the	evaluation	
---------	-----	-----	------------	--

Member Name	Position and Institution		
AIZAWA Masuo	Professor Emeritus, Tokyo Institute of Technology		
IWAMOTO Aikichi	Director, Japan Agency for Medical Research and Development		
KOHARA Satoshi	CEO, Ecotribute., Inc.		
TANAKA Yuzuru	Professor Emeritus, Hokkaido University		
DOI Miwako	Auditor, National Institute of Information and Communications		
DUI WIWAKU	Technology		