JSTトッププレス一覧 > 共同発表

平成29年6月7日

早稲田大学
株式会社日本触媒
科学技術振興機構(JST)

再生可能エネルギー等を利用して、ほしいときにほしいだけ
低温小型でオンデマンドに駆動するアンモニア合成プロセスを開発

ポイント

早稲田大学 理工学術院の関根 泰(セキネ ヤスシ) 教授、中井 浩巳(ナカイ ヒロミ) 教授らの研究グループは、株式会社日本触媒と共同で、電場印加した触媒上で低温かつ世界最高レベルの速度でアンモニア注1)を合成できることを明らかにしました。

アンモニアは、次世代の水素のキャリアや、肥料合成の原料などとして重要な化合物であり、現在はハーバー・ボッシュ法注2)を用いて高温高圧で合成されています。そのため、小型な設備でオンデマンドに低温駆動できるアンモニア合成の触媒プロセス開発が望まれていました。

早稲田大学の研究グループは、半導体性を有する触媒にわずか数Wの電力を印加することで、表面で水素イオンがホッピングして、従来とは異なるメカニズムで低温でも効率よくアンモニアを合成できることを発見しました。さらに、日本触媒の研究グループがこの触媒プロセスを加圧化し、9気圧の条件において世界最高レベルのアンモニア合成速度(30 mmol g-1 h-1以上)を実現しました。今回開発された合成プロセスは、これまでの課題であった水素被毒注3)窒素解離注4)の遅さを解決します。

今後、遠隔地での肥料製造プラントや火力発電所における脱硝のためのアンモニア製造プラント、離島などにおける風力発電を活用したアンモニア燃料(水素キャリア)合成など、再生可能エネルギーなどを利用して、ほしいときにほしいだけのアンモニアを迅速に作ることのできる合成プロセスへの展開が可能になると期待されます。

本研究は、科学技術振興機構(JST)の戦略的創造研究推進事業チーム型研究(CREST)の助成を受けて実施されました。

本研究成果は、英国王立化学会発行の科学誌「Chemical Science」に2017年6月5日(現地時間)に掲載されました。

<研究の背景と経緯>

アンモニアは、次世代の水素のキャリアや、肥料合成の原料などとして重要な化合物であり、現在はハーバー・ボッシュ法を用いて高温高圧で合成されています。そのため、小型でオンデマンドな合成は難しいとされてきました。

こういった中で、多くの研究者が、より低い温度、よりマイルドな環境でのアンモニア合成を実現すべくたくさんの研究を重ねてきています。一方で、再生可能エネルギーなどを利用した小型・オンデマンド型の合成にはまだハードルが多いと考えられていました。

<研究の内容>

早稲田大学の関根教授らのグループは、直流電場を半導体触媒に印加した場合に、低い温度でも速やかに反応が起こることを見いだし、アンモニア合成への展開を進めてきました。この結果、Ruを担持した触媒に、わずか数Wの電力を印加することで、200度程度の低い温度でも速やかにアンモニア合成が出来ることを見いだしました。

さらに、日本触媒の常木氏らのグループは、この触媒系を加圧化し、9気圧の条件において世界最高レベルのアンモニア合成速度(30mmolg-1-1以上)を実現しました。

関根教授らのグループではこのような反応が起こりうる原因を電子顕微鏡観察、赤外分光分析などを用いた解析、さらに15N同位体交換法を用いることで、直流電場中での水素イオンのホッピングが反応を誘起していることにあると突き止めました。さらに中井教授らのグループが計算化学を駆使し、この際にNが中間体となっていることを明らかにしました。

このように固体触媒では従来報告のないN中間体を経由するメカニズムで世界最高レベルのアンモニア合成速度を実現することが出来ました。

<今後の展開>

本技術と再生可能エネルギーの電力を使用する水電解技術(水素製造)を併用することで、オンデマンドで、数10~100トン/日規模のエネルギー効率の高いアンモニア合成プラントの実現が期待されます。例えば、遠隔地での肥料製造プラント、火力発電所における脱硝のためのアンモニア製造プラント、離島などでの風力発電を活用したアンモニア燃料(水素キャリア)合成、などが考えられます。

<参考図>

電場中でのプロトンホッピングによるあらたなNを中間体とするアンモニア合成のスキーム。中央のRuは3nm以下の金属クラスターであり、下のSrZrOxは半導体性を有する担体である。この上で、電場を印加することにより水素イオンが表面をホッピングし(図中1)、Nと反応してN中間体を経由して(図中2)、アンモニア(NH)が生成する(図中3)。

<用語解説>

注1) アンモニア
NH3の構造を持ち、世界中で1億6千万トン/年程度製造される重要な化合物である。主に肥料の原料として用いられる。分解して水素を燃やしても、そのまま燃やしても、いずれにせよ窒素と水しか出来ないことから、再生可能エネルギーと組み合わせた水素貯蔵媒体としても期待される。現在はハーバー・ボッシュ法と呼ばれる100年以上前に確立された工業プロセスにて製造されている。
注2) ハーバー・ボッシュ法
窒素と水素のガスから、鉄系などの触媒を用いて、高温高圧でアンモニアを合成する方法である。第一次世界大戦の頃に実用化が進められ、熱交換などを加味すると非常に効率の良いプロセスである。一方で高温高圧ゆえに小型化しながらの高効率化は難しいとされる。よって、小型・オンデマンド型には向かない。
注3) 水素被毒
従来のRu系のアンモニア合成触媒は、反応時に表面に水素原子がくっついて離れず、反応する部位を覆ってしまうため反応が起こりにくいことが知られています。本系では、水素イオンが電場により動くことで、この水素による被覆(被毒)が抑制できています。
注4) 窒素解離
アンモニアは窒素分子と水素分子から合成されます。窒素分子はN2で表されるため、NH3で表されるアンモニアを合成するためには、最初にNとNの間の結合を切る必要があります。従来のRu系のアンモニア合成触媒においては、この反応が非常に遅いことが知られていました。本系では、水素イオンがN2をたたくことによってN2H+イオンが出来た上で、アンモニアへと反応が進むために、このNとNの結合の切断が起こりやすいと考えられます。

<論文情報>

タイトル Electro-catalytic synthesis of ammonia by surface proton hopping
(電場触媒反応での表面プロトンホッピングによるアンモニア合成)
著者名 R. Manabe, H. Nakatsubo, A. Gondo, K. Murakami, S. Ogo, H. Tsuneki, M. Ikeda, A. Ishikawa, H. Nakai and Y. Sekine
掲載誌 Chemical Science
doi 10.1039/C7SC00840Fx

<お問い合わせ先>

<研究に関すること>

関根 泰(セキネ ヤスシ)
早稲田大学 理工学術院 教授 
Tel:03-5286-3114
E-mail:

中井 浩巳(ナカイ ヒロミ)
早稲田大学理工学術院 教授
Tel:03-5286-3452
E-mail:

常木 英昭(ツネキ ヒデアキ)
株式会社日本触媒 事業創出本部 技監
Tel:06-6317-2251
E-mail:

<JST事業に関すること>

科学技術振興機構 戦略研究推進部 グリーンイノベーショングループ
Tel:03-3512-3531
E-mail:

<報道担当>

早稲田大学 広報室広報課
Tel:03-3202-5454
E-mail:

株式会社日本触媒 経営企画室 IR・広報部
Tel:03-3506-7605
E-mail:

科学技術振興機構 広報課
〒102-8666 東京都千代田区四番町5番地3
Tel:03-5214-8404 Fax:03-5214-8432
E-mail:

(英文)“Surface proton hopping is the key to synthesizing NH3 at low temperature